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SECTION 1.    INTRODUCTION 

This treatise formally establishes the principles of Equation 

Sub-elements – being a headlong excursion into the topsy-turvy 

preoccupation of classifying mathematical equation formats. 

 

Equation sub-elements, hereinafter deemed RST terminology, 

reveal just how Quadratic and Cubic Equations behave with 

respect to one another.  

 

They operate from behind the scenes, governing equation 

interaction through a network of strict rules.   

 

RST terminology acts to associate coefficient structures 

evident within algebraic equation formats to their very root 

sets; thereby enabling them to be directly solved through the 

use of newly presented formulas. 



 

1. CRC Standard Mathematical Tables Twelfth Edition; The 

Chemical Rubber Co. Cleveland, OH; Jan. 1964; pg. 408. 

2. Ibid. 

3. Ibid. 
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SECTION 2.  FUNDAMENTAL  INFORMATION. 

This section presents fundamental information that is to 

serve as a basis for upcoming theory presented in the 

remainder of this treatise.   

2.1.  Well-known Cubic Equations and an Introduction of Cubic Reduction. 

2.1.1.  Well-known  Cubic Equations.. 

Known, or previously established Cubic Equations for the 

sine, cosine and tangent of any given angle of value 3θo are 
as follows: 

Equation 1.  Known Cubic Equation for the Cosine (3θ). 

)3cos(cos3cos4 3 θθθ =− FOOTNOTE1 

)3cos(
4

1
cos

4

3
cos3 θθθ +=  

4
cos

4

3 τ
θ +=  

Equation 2.  Known Cubic Equation for the Sine (3θ). 

)3sin(sin4sin3 3 θθθ =− FOOTNOTE 2 

)3sin(
4

1
sin

4

3
sin 3 θθθ −=  

4
sin

4

3 η
θ −=  

Equation 3.  Known Cubic Equation for the Tangent (3θ). 
3 FOOTNOTE

2

3

tan31

tantan3
)3tan(

θ

θθ
θ

−

−
=  

)tan31)(3tan(tan3tan 23 θθθθ −−=  

)tan31(tan3 2 θζθ −−=  
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2.1.2.  An Introduction of Cubic Reduction. 

Cubic reduction is a method whereby equations of the third 

order, or higher, may be transformed into lower order 

Linear and Quadratic Equations.   

 

Simply speaking, cubic reduction occurs whenever right-hand 

terms from either Equation 1, Equation 2, or Equation 3 

become substituted for respective left-hand cubic terms as 

they might appear in other higher order equations. 

 

A first excursion into cubic reduction may best be served 

by means of examining the following equality: 

θ
φ

cos2

1
 sin =   

Multiplying both sides of the equation by a factor of 

 cos2 θ , otherwise known as cross multiplication yields: 

1 cos2sin =θφ  
33 )1( )cos(2sin =θφ  

2 )cos2(2sin 3 =θφ  

2) cos4)((4sin 33 =θφ  

Since Equation 2, applies to any variable (not only θ), it 
is obvious that: 

)(3sin  -sin 3  sin 4 3 φφφ =  

λφ  -sin 3  =  

Also, 

)cos(3os 3  cos 4 3 θθθ += c  [Ref. Equation 1] 

τθ += os 3  c  

Then by combining the above results, 

2)os 3)( -sin 3 ( =+τθλφ c  

Substitution for  sinφ  into the first term above yields: 

2)os 3)( -
cos2

3 
( =+τθλ

θ
c  

Or, 

θτθθλ cos4)os 3)(cos2 -3( =+c  

Then, 

θθτλθλτθ cos4cos2cos6-3cos9 2 =−+  

Whereby, the following results: 
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Equation 4.  An Equation 1 Reduction. 

0
2

cos)
6

52
(cos 2 =−

−
+

λ

τ
θ

λ

τλ
θ  

The above result depicts a transformation of Equation 1.  

Since it includes only linear and second order terms of the 

cos θ, it truly represents a reduced form of Cubic Equation 
1. 

 

Notice that this equation is conveniently expressed in 

terms of  

• Readily identifiable numerical coefficients 

• A known, or given, cos(3θ) value, τ,  

• And a second variable, unknown )(3sin  φ  term, λ 

 

The λ variable permits Equation 4 to maintain and reflect 
different quantitative values for cos θ. 

 

Equation 4 is formatted such that when cos θ is irrational, 
it nevertheless remains related, or linked via the 

Quadratic Formula, to a set of given, or known 

coefficients, including τ, via only one other unknown 
quantity, λ. 

2.2.  Quadratic vs. Complex Quadratic Equations. 

This treatise attempts to establish a distinction between 

two categories of Quadratic Equations as follows: 

• Those which express first and second order 

mathematical combinations of a singular unknown 

quantity, in this case, ‘x’ -- Hereinafter to be known 

as Normal Quadratic Equations, or just Quadratic 

Equations. 

• Those which express first and second order 

combinations of multiple unknown quantities, in this 

case, ‘x1’, ‘x2’, etc. -- Hereinafter to be known as 

‘so-called’ Complex Quadratic Equations. 

 

Quadratic Equations represent various combinations of the 

following three types of like terms: 

1) Those which are expressed in ‘x2’; 
2) Those which are expressed in ‘x’; and 
3) Those which are completely devoid of ‘x’ and ‘x2’ 

terminology. 
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Similar like terms may be collected together via the 

Associative Law, ultimately, to produce the following well 

known Quadratic Equation format, where a, b, and c depict 

given coefficients: 

ax2 + bx + c = 0 

 

The following well-known Quadratic Formula expresses ‘x’ in 

terms of its three known coefficients, a, b, and c: 

a

acbb
x

2

42 −±−
=  

The Quadratic Formula returns two distinct numerical roots 

which satisfy any Quadratic Equation of the above form it 

becomes applied to. 

 

Conversely, when the Quadratic Formula is applied to a 

Complex Quadratic Equation, it produces root sets where the 

value of the first root is ascribed in terms of its other, 

yet to be resolved unknown.  Hence, a quantifiable value 

cannot be realized until such time that the second unknown 

term becomes independently ascertained. 

 

A simple reformatting of the Complex Quadratic Equation 

shown below demonstrates this: 

02

2

21

2

1 =+++++ fexdxcbxax  

Where, 

• a, b, c, d, e, and f represent given coefficients 

• ‘x1’ and ‘x2’ represent unknown quantities 

 

Letting g = c + dx2
2 + ex2 + f renders, 

0  g bx  ax 1

2

1 =++  

Or via Quadratic Formula, 

a

agbb
xx ba

2

4
;

2

11

−±−
=  

a

fexdxcabb

2

)(4 2

2

2

2 +++−±−
=  

 

Above, the ba
xx 11 ;  root set is expressed in terms of given 

coefficients along with a radical which contains first and 

second order unknown 2x  terms. 
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2.3.  Quadratic Equation Mapping 

Figure 1 portrays a right triangle ABC, where line BE 

represents an altitude, and: 

The length of side AB is designated as t 

The length of side AC is designated as s 

The length AE is designated as v 

The angle CAB is designated as θ 

Figure 1.  Illustration of Elements Exhibited in the Quadratic Formula. 

 
Then, 

t

v

s

t
==θcos  

Cross multiplying yields, 

2 tvs =  

s

t
v

2

 =  

Now, length AD is to be designated as b such that point D 

resides somewhere on line AB with b being smaller than 

length AB.  Furthermore, length t represents the following: 

acbt 42 −=   

Such that, 

acbt 422 −=  

Or, 

s

acb

s

t
v

422 −
==  

Delta is defined as follows: 

BDbt =−=∆  

With respect to the Quadratic Formula presented below, a, 

b, and c meet the following constraints: 

• a > 0 

• b > 0 

• c ≤ 0 
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x1;x2 
a

acbb

2

42 −±−
=  

a

tb

2

±−
=  

a

tb

a 2

)(
;

2

+−∆
=  

Or, 

a

x

21

1 ∆
=  

 

A rectangle with adjacent sides equal to 2a and Δ, 
respectively, is portrayed in Figure 2. 

 

Figure 2.  Quadratic Equation Euclidean Mapping. 

 
Next, a diagonal which connects opposite corners of this 

rectangle is drawn. 

 

Lastly, a horizontal line is inserted within the rectangle 

which describes the locus of points where its height is 

equal to one unit. 

 

Per Figure 2, Δ/2a depicts the ratio of the respective 
sides of a right triangle whose hypotenuse is represented 

by the diagonal to the rectangle. 

 

The intersection point of the rectangle’s diagonal with the 

line of height equal to one unit describes the vertex of a 

second right triangle also appearing in this figure. 

 

Since these two above mentioned right triangles exhibit a 

common, equal angle between them, they are similar and must 

have respective sides meeting the ratio afforded above.   
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Hence, the horizontal length running from this newly 

identified vertex to the right side of the rectangle must 

be equal to x1 in length. 

 

Therefore, it is demonstrated that x may be constructed 

merely by applying the coefficients a, b, and c appearing 

in any given Quadratic Formula, based upon a calculation of 

the following two parameters: 

• acbt 42 −=  

• bt −=∆  

2.4.  Three Roots Does a Cubic Make! 

Equations 1, 2, and 3 may be reconstituted as: 

τ = cos (3θ)  = 4cos3 θ - 3cos θ 
η = sin (3θ)  = 3sin θ - 4sin3 θ  

ζ  = tan(3θ)  = 
θ

θθ
2

3

tan31

tantan3

−

−
 

Now, since  

3θ  = 3[θ] 
= 3(θ + 120o) = 3θ + 360o = 3θ 
= 3(θ + 240o) = 3θ + 720o = 3θ 

It follows that  

τ  = cos 3(θ)   = 4cos3 θ     -3cos θ 

)]120(3cos[ o+= θ   )120cos(3)120(cos4 3 oo +−+= θθ  

)]240(3cos[( o+= θ   )240cos(3)240(cos4 3 oo +−+= θθ  

 

η  = sin 3(θ)  = 3sin θ    - 4sin3 θ 

)]120(3sin[( o+= θ   )120(sin4)120sin(3 3 oo +−+= θθ  

)]240(3sin[( o+= θ   )240(sin4)240sin(3 3 oo +−+= θθ  

 

ζ   = tan 3(θ)  = 
θ

θθ
2

3

tan31

tantan3

−

−
 

)]120(3tan[( o+= θ  = 
)120(tan31

)120(tan)120tan(3
2

3

o

oo

+−

+−+

θ

θθ
 

)]240(3tan[( o+= θ  = 
)240(tan31

)240(tan)240tan(3
2

3

o

oo

+−

+−+

θ

θθ
 

Above, three unique cosine values produce the same value 

for τ, as represented in Equation 1.  Hence, the three 
roots for the Equation 1 cubic are cos θ, cos (θ + 120o), 
and cos (θ + 240o), respectively. 
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Likewise, the three roots for Equation 2 are sin θ, sin (θ 
+ 120o), and sin (θ + 240o), respectively. 
 

Lastly, the three roots for Equation 3 are tan θ, tan (θ + 
120o), and tan (θ + 240o), respectively. 
 

It makes sense that cos θ is a root for Equation 1 since 
the latter represents a trisection equation for any given 

value of cos (3θ), or τ, where (3θ)/3 = θ.   However, the 
other two roots are not obvious.  Hence, these assertions 

are validated below. 

2.4.1.  The Cosine Cubic. 

Letting x1, x2, and x3, respectively, represent the unique 

combination of functions expressed below: 

x1 = cos θ   = cos θ1 

x2 = cos (θ + 120
o)  = cos θ2 =-1/2 cos θ - 3 /2 sin θ 

x3 = cos (θ + 240
o)  = cos θ3 =-1/2 cos θ + 3 /2 sin θ 

Then,  

]sin ¾ -cos [1/4 cos  ))(x)(x(x 22

321 θθθ=  

]/4 sin 3 -  )[cos (cos 22 θθθ=  

]/4cos-1( 3 -  )[cos (cos 22 θθθ=  

3]/4 -  )[4cos (cos 2 θθ=  

)3cos -  1/4)(4cos ( 3 θθ=  

 

 

 

Or, 

4
 xxx 321

τ
=  

Also, by inspection: 

0 xxx 321 =++  

And, 

32321323121 x x+ ) x+ (xx  xx  xx+ xx =+  

3211 x x+ )(-xx=  

4/) sin 3 -  cos()cos(cos 22 θθθθ +−=  

4/)] cos-(1 3 -  cos[cos 222 θθθ +−=  

]3/4 -  cos[cos 22 θθ +−=  

3/4 -=  

)os(3
4

1
 θc=  [Ref. Equation 1] 
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Furthermore, a Cubic Equation in ‘x’ contains three roots, 

‘x1’, ‘x2’ ‘x3’which must satisfy that equation.  Then, the 

following three equalities must hold: 

 xx

xx

xx

3

2

1

=

=

=

 

Or, 

0 xx

0xx

0xx

3

2

1

=−

=−

=−

 

 

Accordingly, the product of the above must equal zero, as 

follows: 

0])()[())()(( 3232

2

1321 =++−−=−−− xxxxxxxxxxxxxx  

0)()( 321323121321

23 =−+++++−= xxxxxxxxxxxxxxx  

Now, when x = cos θ, the above equation assumes the 
following form: 

0)(cos)(coscos 321323121321

23 =−+++++− xxxxxxxxxxxx θθθ  

Lastly the three prior relationships which were determined 

above are substituted in -- Namely: 

Equation 5.  The Product of the Roots from Equation 1 Equals τ/4.  

4
 xxx 321

τ
=  

Equation 6.  The Summation of the Roots from Equation 1 Equals Zero. 

0 xxx 321 =++  

Equation 7.  The Sum of Paired Products from Equation 1 Equals Minus ¾. 

4

3
-  xx  xx+ xx 323121 =+  

This establishes the final form for the Cubic Equation as 

follows: 

04/)4/3(cos)0(coscos 23 =−−+− τθθθ  

This is identical to Equation 1: 

04/cos)4/3(cos3 =−− τθθ  [Ref. Equation 1] 

 

Such identity proves that the three roots for Equation 1 

are indeed: 
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)240cos( x

)120cos(x

cx

o

3

2

1

+=

+=

=

θ

θ

θ
o

os

 

2.4.2.  The Sine Cubic. 

Letting y1, y2, and y3, respectively, represent the unique 

combination of functions expressed below: 

y1 = sin θ   = sin θ1 

y2 = sin (θ + 120
o)  = sin θ2= -1/2 sin θ + 3 /2 cos θ 

y3 = sin (θ + 240
o)  = sin θ3= -1/2 sin θ - 3 /2 cos θ 

Then, 

 

]cos ¾ -[1/4sin s ))(y)(y(y 22

321 θθθin=  

]/4 cos 3 -  )[sinin( 22 θθθs=  

]/4sin-1( 3 -  )[sin(sin  22 θθθ=  

3]/4 -  )[4sin(sin  2 θθ=  

)3sin -  1/4)(4sin ( 3 θθ=  

 

 

 

Or, 

4
 yyy 321

η
−=  

Also, by inspection: 

0 yyy 321 =++  

And, 

32321323121 yy + )y + (yy y y y y+ yy =+  

3211 yy + )(-yy=  

4/) cos 3 -  (sin)sin(sin 22 θθθθ +−=  

4/)] sin-(1 3 -  [sinsin 222 θθθ +−=  

]3/4 -  s[sin 22 θθ in+−=  

3/4 -=  

Furthermore, a Cubic Equation in ‘y’ contains three roots, 

‘y1’, ‘y2’ ‘y3’which must satisfy that equation.  Then, the 

following three equalities must hold: 

)in(3
4

1
- θs=  [Ref. Equation 2] 
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 yy

yy

yy

3

2

1

=

=

=

 

Or, 

0 yy

0yy

0yy

3

2

1

=−

=−

=−

 

Accordingly, the product of the above must equal zero, as 

follows: 

0])()[())()(( 3232

2

1321 =++−−=−−− yyyyyyyyyyyyyy  

0)()( 321323121321

23 =−+++++−= yyyyyyyyyyyyyyy  

Now, when y = sin θ, the above equation assumes the 
following form: 

0)(sin)(sinsin 321323121321

23 =−+++++− yyyyyyyyyyyy θθθ  

Lastly the three prior relationships which were determined 

above are substituted in -- Namely: 

Equation 8.  The Product of the Roots from Equation 2 Equals η/4. 

4
 yyy 321

η
−=  

Equation 9.  The Summation of the Roots from Equation 2 Equals Zero. 

0 yyy 321 =++  

Equation 10.  The Sum of Paired Products from Equation 2 Equals Minus ¾. 

4/3- y y y y+ yy 323121 =+  

This establishes the final form for the Cubic Equation as 

follows: 

04/)4/3(sin)0(sinsin 23 =+−+− ηθθθ  

This is identical to Equation 2: 

04/sin)4/3(sin 3 =+− ηθθ  [Ref. Equation 2] 

 

Such identity proves that the three roots for Equation 2 

are indeed: 

)240(s y

)120sin(y

siny

o

3

2

1

+=

+=

=

θ

θ

θ

in

o
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2.4.3.  The Tangent Cubic. 

Letting z1, z2, and z3, respectively, represent the unique 

combination of functions expressed below: 

z1 = tan θ   = tan θ1 

z2 = tan (θ + 120
o)  = tan θ2 = 

θ

θ

tan31

3tan

+

−
 

z3 = tan (θ + 240
o)  = tan θ3 = 

θ

θ

tan31

3tan

−

+
 

Then, 

]
tan31

3tan
[ tan ))(z)(z(z

2

2

321
θ

θ
θ

−

−
=  

θ

θθ
2

3

tan31

tan3tan

−

−
=  

θ

θθθθ
2

2

tan31

tan3) 3tan-)(1 tan(33tan

−

−−
=  [Ref. Equation 3] 

θ

θθ
2

2

tan31

) 3tan-)(1 tan(3

−

−
=  

) tan(3θ−=  

Or, 

ζ zzz 321 −=  

Also: 

θ

θθθθθθ
2

2

321
tan31

]tan31][3[tan]tan31][3[tan]tan31)[(tan

−

+++−−+−
=++ zzz  

θ

θθθθθθθθ
2

223

tan31

tan33tan3tantan33tan3tantan3tan

−

+++++−−+−
=  

θ

θθ
2

3

tan31

tan3tan9

−

−
=  

θ

θθθθ
2

2

tan31

)] 3tan-)(1tan(3- 3tan [3tan9

−

−
=  [Ref. Equation 3] 

)tan(33 θ=  

ζ3=  

Then, 

132 3 zzz −=+ ζ  

θζ tan3 −=  

So, 
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32321323121 zz  )z  (zz  zz  zz  zz ++=++  

]
tan

tan
[

tan31

3tan
)tan3(tan

2

2

θ

θ

θ

θ
θζθ

−

−
+−=  

))(tantan31(

tantan3
)tan3(tan

2

3

θθ

θθ
θζθ

−

−
−−=  

θζθζθ tan/)tan3(tan −−=  

θ

ζθζθ

tan

)tan3(tan 2 −−
=  

θ

θζθ

tan

)tan31(tan 23 −−−
=  

θ

θθθ

tan

)tantan3(tan 33 −−−
=  [Ref. Equation 3] 

3−=  

Furthermore, a Cubic Equation in ‘z’ contains three roots, 

‘z1’, ‘z2’ ‘z3’which must satisfy that equation.  Then, the 

following three equalities must hold: 

 zz

zz

zz

3

2

1

=

=

=

 

Or, 

0 zz

0zz

0zz

3

2

1

=−

=−

=−

 

Accordingly, the product of the above must equal zero, as 

follows: 

])()[())()(( 3232

2

1321 zzzzzzzzzzzzzz ++−−=−−−  

0)()( 321323121321

23 =−+++++−= zzzzzzzzzzzzzzz  

Now, when z = tan θ, the above equation becomes: 

0)(tan)(tantan 321323121321

23 =−+++++− zzzzzzzzzzzz θθθ  

Lastly the three prior relationships which were determined 

above are substituted in -- Namely: 

Equation 11.  The Product of the Roots from Equation 3 Equals Minus ζ. 

ζ zzz 321 −=  

Equation 12.  The Summation of the Roots from Equation 3 Equals 3ζ. 

ζ3321 =++ zzz  

Equation 13.  The Sum of Paired Products from Equation 3 Equals Minus 3. 

3 zz  zz  zz 323121 −=++  
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This establishes the final form for the Cubic Equation as 

follows: 

0)3(tan)3(tantan 23 =+−+− ζθζθθ  

This is identical to Equation 3: 

0tan3tan3tan 23 =+−− ζθθζθ  [Ref. Equation 3] 

Since these two equations appearing above are virtually 

identical, it proves that the three roots for Equation 3 

are: 

)240(tan z

)120tan(z

tanz

o

3

2

1

+=

+=

=

θ

θ

θ
o
 

2.5.  The Cubic Correlation. 

A reconstitution of Equations 5 thru 13 is given below 

where right-hand side equation elements represent either 

given trigonometric values for 3θ or rational numbers, and 

left-hand side equation members denote respective Equation 

1, Equation 2, and Equation 3 root combinations which they 

are comprised of: 

4
 xxx 321

τ
=  

4
 yyy 321

η
−=  

ζ zzz 321 −=  

0 xxx 321 =++  

0 yyy 321 =++  

ζ3321 =++ zzz  

-3/4  xx  xx+ xx 323121 =+  

4/3- y y y y+ yy 323121 =+  

3 zz  zz  zz 323121 −=++  

Table 1 validates these Equation 5 thru 13 relationships 

for 3θ = 60o. 
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Table 1.  Cubic Equation Root Correlation for 3θ = 60o. 

3θ

Deg

θ

Deg

τ  

cos (3θ) 
τ/4

x1
cos θ

x2

cos (θ+120
o
)

x3

cos (θ+240
o
)

x1x2x3

[τ/4]

x1+x2+x3

[0]

x1x2+x1x3+x2x3

[-¾]

60 20 0.500000 0.125000 0.939692620785908 -0.76604444311898 -0.17364817766693 0.125000 0.000000 -0.75

3θ

Deg

.

θ

Deg.

η 

sin (3θ) 
η/4 

y1
sin θ

y2

sin (θ+120o)

y3

sin (θ+240o)

y1y2y3

[-η/4] 

y1+y2+y3

[0]

y1y2+y1y3+y2y3

[-¾]

60 20 0.866025404 0.216506351 0.342020143325669 0.64278760968654 -0.98480775301221 -0.216506351 0.000000 -0.75

3θ

Deg

.

θ

Deg.

ζ

tan (3θ) 
3ζ

z1
tan θ

z2

tan (θ+120o)

z3

tan (θ+240o)

z1z2z3

[-ζ]

z1+z2+z3

[3ζ]

z1z2+z1z3+z2z3

[-3]

60 20 1.732050808 5.196152423 0.363970234266202 -0.83909963117728 5.67128181961771 -1.732050808 5.196152423 -3
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SECTION 3.  COMPLEX QUADRATIC EQUATIONS. 

This section develops new sets of Complex Quadratic 

Equations and introduces proposed supporting theory which 

explains how the new relationships should apply.  

It also charts relevant relationships in order to further 

characterize and demonstrate them. 

3.1.  Development and Proposed Supporting Theory. 

Where,  

)(3 213 zzz +−= ζ  [Ref. Equation 12] 

 

)](3[ 2121321 zzzzzzz +−= ζ  

= )()3( 212121 zzzzzz +−ζ  

ζ −=  [Ref. Equation 11] 

Therefore, the following equation becomes established: 

Equation 14.  A Complex Quadratic Equation that Relates ‘z1’, ‘z2’, and ‘ζ’. 

0)3( 21

2

212

2

1 =−−+ ζζ zzzzzz  

Notice that the above equation expresses only linear and 

second order terms in both of its two unknown components, z1 
and z2.  Hence it qualifies as a Complex Quadratic Equation. 

Dividing through by z2 yields 

0]
)3(

[
2

1

2

2

2

22

1 =−
−

+
z

z
z

zz
z

ζζ
 

Likewise, dividing through by z1 yields 

0]
)3(

[
1

2

1

1

2

12

2 =−
−

+
z

z
z

zz
z

ζζ
 

Simplifying second terms in each of the above two equations 

gives the following results: 

0)3(
2

12

2

1 =−−+
z

zzz
ζ

ζ  

0)3(
1

21

2

2 =−−+
z

zzz
ζ

ζ  

Note, that these equations may become even further 

simplified by substituting ascertained values for unknowns 

exhibited in the denominators of each of the respective 

third terms above.  Then, such Complex Quadratic Equations 

would become Normal Quadratic Equations. 
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Quantifications for each of the respective third terms 

above are established as follows, where: 

θθθζ 32 tantan3)tan31( −=−  [Ref. Equation 3] 

θθθζζ 32 tantan3tan3 −=−  

θθθζ
θ

ζ 2tantan3tan3
tan

−+=  

Or, 

1

2

1

1

tan3tan3
tan

 θθζ
θ

ζ
−+=  

2

2

2

2

tan3tan3
tan

 θθζ
θ

ζ
−+=  

3

2

3

3

tan3tan3
tan

 θθζ
θ

ζ
−+=  

Then it follows that, 

2

11

1

33 zz
z

−+= ζ
ζ

 

2

22

2

33 zz
z

−+= ζ
ζ

 

2

33

3

33 zz
z

−+= ζ
ζ

 

So, substituting these respective third term derivations 

into the above Complex Quadratic Equation development 

yields the following results:  

0)33()3(
2

2212

2

1 =−+−−+ zzzzz ζζ  

0)33()3(
2

1121

2

2 =−+−−+ zzzzz ζζ  

 

Applying the Quadratic Formula shown below produces:  

a

acbb
z

2

42 −±−
=  

)1(2

)]33()[1(4)3()3(
2

22

2

22

1

zzzz
z

−+−−−±−−
=

ζζζ
   

)1(2

)]33()[1(4)3()3(
2

11

2

11

2

zzzz
z

−+−−−±−−
=

ζζζ
 

Expanding terms renders: 
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)1(2

)41212()96()3(
2

22

2

2

2

22

1

zzzzz
z

−+++−±−
=

ζζζζ
 

)1(2

)41212()96()3(
2

11

2

1

2

11

2

zzzzz
z

−+++−±−
=

ζζζζ
 

Combining terms results in: 

Equation 15.  An Expression for the ‘z1’ Root for Equation 14. 

2

36)129()3(
2

22

2

2

1

zzz
z

−++±−
=

ζζζ
 

Equation 16.  An Expression for the ‘z2’ Root for Equation 14. 

2

36)129()3(
2

11

2

1

2

zzz
z

−++±−
=

ζζζ
 

Both of the above equations assume exactly the same 

structure.  This is easily evidenced by means of swapping 

locations for each variable.  

 

The above two equations, relate z1 and z2 unknowns to a known 

tan (3θ), or ζ , value. 

 

Either z1 or z2 may be solved for, once given the value of 

its constituent, remaining unknown.  For any given value of 

ζ , a distinct family of unknowns becomes characterized as 

the first unknown assumes various, arbitrary values.  This 

emphasizes the fact that both of the above two equations 

may be viewed, or considered as representing distinct 

families of root sets. 

 

Now, for the particular condition when ζ  = 3 , Complex 

Quadratic Equation 14 portrays the two unknown quantities, 

z1 and z2, as follows: 

Equation 17.  Expression for Equation 14 when ζ = √3. 

0333 21

2

212

2

1 =−−+ zzzzzz  

Since Complex Quadratic Equations constitute families of 

unknowns, or root sets, resultant z2 values may be 

determined, or generated, once arbitrary z1 values are input 

into the above equation; and vice versa. 

 

However, even though meeting the criterion of this above, 

given equation, selected roots sets may not meet additional 

criteria which may satisfactorily relate them to 3=ζ . 
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So, for the specific condition when 12 =z : 

0333 21

2

212

2

1 =−−+ zzzzzz  [Ref. Equation 17] 

03)1(33)1()1( 1

2

1

2

1 =−−+ zzz  

Then, 

Equation 18.  Expression for Equation 17 when ‘z2’ = 1. 

03)331( 1

2

1 =−−+ zz  

3.2.  Verification. 

With ζ  held constant at a specified value of 0.6, the first 

tabulation below indicates that Equation 15 calculates 

different root set values for each unique z2 value that is 

applied to it. 

The second tabulation below demonstrates that Equation 15 

and Equation 16 are inextricably linked by virtue of the 

fact that they share multiple root values of 2.685182821, 

and -1.347582821,respectively.  As indicated, such 

relationship holds when applying a z1 root obtained from 

Equation 15 into Equation 16. 

 

Notice that the left-hand sides of the two tabulations 

below are exactly the same.  This is because in both cases 

Equation 15 is solving for z2 = 0.4624 at 6.0=ζ . 

 

Further below, Equation 15 and Equation 16 are verified for 

accuracy when 
o20=θ .  Then, 

z1 = tan θ   = tan 20o      =  0.363970234 

z2 = tan (θ + 120
o) = tan 140o = -tan(2θ) = -0.839099631 

z3 = tan (θ + 240
o) = tan 260o =  tan(4θ) =  5.67128182 

Where: 

)3tan( θζ =  

)203tan( ox=  
o60tan=  

3=  

2

36)129()3(
2

22

2

2

1

zzz
z

−++±−
=

ζζζ
 [Ref. Equation 15] 

 

2

36)129()3(
2

11

2

1

2

zzz
z

−++±−
=

ζζζ
 [Ref. Equation 16] 
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When ζ  = 0.6, and z2 = 0.4624 But, when ζ  = 0.6, and z1 = 2.68518281 

2

36)129()3(
2

22

2

2

1

zzz
z

−++±−
=

ζζζ
 [Ref. Equation 15] 

 2

36)129()3(
2

11

2

1

2

zzz
z

−++±−
=

ζζζ
 [Ref. Equation 16] 

 

2

0.4624)(30.4624)(0.6)(6120.6)(90.46240.6)(3 22

1

−++±−
=z  

2

)2.68518282(3)2.68518282(0.6)(6120.6)(92.685182820.6)(3 22

2

−++±−
=z  

2

)64144128.0()66464.1()24.15(3376.1
1

−+±
=z  

2

)63062033.21()666658152.9()24.15(88518282.0
2

−+±−
=z  

2

)26319872.16(3376.1
1

±
=z  

2

)276037822.3(88518282.0
2

±−
=z  

2

032765642.43376.1
1

±
=z  

2

809982824.188518282.0
2

±−
=z  

z1 = 2.685182821, -1.347582821 z1 = +0.462400002, -1.347582821  

When ζ  = 0.6, and z2 = 0.4624 When ζ  = 0.6, and z2 = 0.5206 

2

36)129()3(
2

22

2

2

1

zzz
z

−++±−
=

ζζζ
 [Ref. Equation 15] 

 2

36)129()3(
2

22

2

2

1

zzz
z

−++±−
=

ζζζ
 [Ref. Equation 15] 

 

2

0.4624)(30.4624)(0.6)(6)120.6)(9(]0.46240.6)(3[ 22

1

−++±−
=z  

2

0.5206)(30.5206)(0.6)(6)120.6)(9(]0.52060.6)(3[ 22

1

−++±−
=z  

2

)64144128.0()66464.1()24.15(3376.1
1

−+±
=z  

2

)81307308.0()87416.1()24.15(2794.1
1

−+±
=z  

2

)26319872.16(3376.1
1

±
=z  

2

)30108692.16(2794.1
1

±
=z  

2

032765642.43376.1
1

±
=z )4tan(,tan1 θθ=z  

2

037460454.42794.1
1

±
=z )4tan(,tan1 θθ=z  

z1 = 2.685182821, -1.347582821 z1 = 2.658430227, -1.379030227 
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2

)31-0.8390996(3)31-0.8390996(36)12)3)(9()31-0.8390996(33 22

1

−++±−
=z  

2

)40.36397023(3)40.36397023()3(6)12)3)(9()40.36397023(33 22 −++±−
=  

2

)31-0.8390996(3)31-0.8390996(8)1.73205080(6)39()31-0.8390996(33 2−+±−
=  

2

)40.36397023(3)40.36397023(8)1.73205080(6)39()40.36397023(33 2

2

−+±−
=z  

Table 2.  ‘z1’and ‘z2’ Root Determination Table. 

z1 Root Determination z2 Root Determination 

2

2720179163.8)39(.0352520546
1

−−±
=z

 

2

0782489629.3)39(832182188.4
2

−+±
=z

 

2

16755626.28.0352520546
1

±
=z  

2

38506663.42832182188.4
2

±
=z  

2

307311585.5.0352520546
1

±
=z  

2

510381451.6832182188.4
2

±
=z  

67128182.5,363970234.01 ++=z  31-0.8390996,67128182.52 +=z  

)4tan(,tan1 θθ=z  )2tan(),4tan(2 θθ −=z  

Hence, z1 and z2 results given in table 2 match respective 

values for tan 20o, tan 140o, and tan 260o shown above, 

thereby demonstrating Equation 15 and Equation 16 accuracy. 

Now, with respect to Equation 18, ‘Completing the Square’ 

gives the following roots: 

03)331( 1

2

1 =−−+ zz  [Ref. Equation 18] 

22

1

2

1

2

1 ]
2

)331(
[3]

2

)331(
[]

2

)331(
[)331(

−
+=

−
+=

−
+−+ zzz  

Taking the square root of each side renders: 

2

1 ]
2

)331(
[3

2

)331( −
+=

−
+z  

4

)27361(34

2

)331(
1

+−+
±

−
−=z  

2

53589838.24133 ±−
=  

2

953372425.4196152423.4 ±
=  

10.37861000- 4,4.57476242=  
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Checks: 

0333 21

2

212

2

1 =−−+ zzzzzz  [Ref. Equation 17] 

03)1(4)4.57476242(33)1(4)4.57476242()1(44.57476242 22 =−−+  

0377116286.2344.5747624292845124.20 =−−+  

00 =  

0333 21

2

212

2

1 =−−+ zzzzzz  [Ref. Equation 17] 

03)1(001)(-0.37861033)1(001)(-0.378610)1(001)(-0.378610 22 =−−+  

0341.9673152710.37861000-143345532.0 =−+  

00 =  

Validating Equation 14 for a second value, when 

)(3 tan = 565.9051574 tan =   5= o θζ  

o565.9051574 3 =θ  

3

565.9051574
 

o

=θ  

o221.9683858=  

z1 = tan θ   = tan  21.96838582o =  0.403384527 

z2 = tan (θ + 120
o)  = tan 141.96838582o = -0.782174586 

z3 = tan (θ + 240
o)  = tan 261.96838582o =  7.086993995 

Where,  

2

36)129()3(
2

11

2

1

2

zzz
z

−++±−
=

ζζζ
 [Ref. Equation 16] 

2

]7)0.40338452(3[27)](0.403384556[]12)5(9[()70.4033845253( 2

2

−++±−
=z  

2

488157229.0411971341.557)304819406.6( −+±
=  

2

92381411.61)304819406.6( ±
=  

782174586.0,086993992.7 −=  

)120 (tan , )240 (tan oo ++= θθ  

Then, 

0)3( 21

2

212

2

1 =−−+ ζζ zzzzzz  [Ref. Equation 14] 

0586)-0.7821745(7)0.40338452)(53(86)-0.7821745(7)0.40338452(86)-0.7821745(7)0.40338452(
22 =−−+  

05116553221.2246789476.060.12727472- =−++  

055 =−  
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As such Equations 14 thru 16 are accurate too since z2 

results match the initial, respective z2 and z3 values 

posted just above. 

3.3.  Charting. 

Table 3 presented below capitalizes on the fact that 

Equation 17, being a Complex Quadratic Equation, 

characterizes dual root sets, with each distinct z1 value 

selection returning two solutions for z2, and vice versa. 

 

Below are furnished four distinct values for z2, each of 

which are accompanied by associated z1 dual root set values 

which were determined via Equation 17.  Accordingly, each 

root set occupies two consecutive rows in Table 3: 

1st root set, 

z2 = 1 

z1 = 4.574762424, -0.378610001 

2nd root set, 

z2 = tan 20
o = 0.363970234 

z1 = -0.839099631, 5.67128182 

3rd root set, 

839099631.0)2tan(140tan)120tan(2 −=−==+= θθ ooz  

z1 = 0.363970234, 5.67128182 

Fourth root set, 

839099631.0)2tan(140tan)120tan(2 −=−==+= θθ ooz  

z1 = 0.363970234, 5.67128182 

The first two columns in Table 3 itemize above respective 

root set z1 and z2 values, while columns three thru six 

itemize respective calculations for each of the respective 

terms contained in Equation 17.  The last column of Table 3 

enumerates respective summations for each row. 

 

Since roots represent selected values of z1 and z2 which 

satisfy Equation 17, they occur when last column summations 

equal zero.  Since all Table 3 last column summations equal 

zero, then all z1 and z2 values listed depict true roots of 

Equation 19. 

 

Since Equation 17 is symmetrical with respect to zl and z2, 

root values are swapped in rows 3 and 5; rows 4 and 7; and 

in rows 6 and 8, respectively.
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Table 3.  Four Root Sets For the Complex Quadratic Equation 17. 

 

z1 z2 z1
2
z2 z1z2

2
 -3√3z1z2 -√3 z1

2
z2 + z1z2

2
 - 3√3z1z2 - √3 = 0 

4.574762424 1 20.92845124 4.574762424 -23.77116285 -1.732050808 0 

-0.378610001 1 0.143345533 -0.378610001 1.967315274 -1.732050808 0 

-0.839099631 0.363970234 0.256267144 -0.111159162 1.586942825 -1.732050808 0 

5.67128182 0.363970234 11.70653387 0.751299266 -10.72578233 -1.732050808 0 

0.363970234 -0.839099631 -0.111159162 0.256267144 1.586942825 -1.732050808 0 

5.67128182 -0.839099631 -26.98832852 3.993082556 24.72729677 -1.732050808 0 

0.363970234 5.67128182 0.751299266 11.70653387 -10.72578233 -1.732050808 0 

-0.839099631 5.67128182 3.993082556 -26.98832852 24.72729677 -1.732050808 0 



 

1. College Physics Third Edition; Sears & Zemansky; 
Addison Wesley Publishing Company, Reading, 

Massachusetts; 1960; page 159, Equation 8-4. 

2. Ibid; page 129, Equation 7-5. 
3. Ibid; page 129, Equation 7-6. 
4. Ibid; page 163, Equation 8-5. 
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3.4.  Practical Application. 

Certain well-known equations in physics constitute Complex 

Quadratic Equations. 

3.4.1.  Well-known Complex Quadratic Equations in Physics. 

The well-known Conservation of Linear Momentum for two 

colliding particles is given below.  No relativistic 

effects occur since each mass is unaffected by the impact. 

Conservation of Linear Momentum Equation. 

22112211 vmvmVmVm +=+ Footnote 1 

Where, 

m1 = Mass of 1
st
 particle, 

m2 = Mass of 2
nd

 particle, 

V1 = Velocity of 1
st
 particle before collision, 

V2 = Velocity of 2
nd

 particle before collision, 

v1 = Velocity of 1
st
 particle after collision, and 

v2 = Velocity of 2
nd

 particle after collision. 

Its associated Complex Quadratic Equation is as follows: 

022112211 =−−+ vmvmVmVm  

Secondly, for a purely elastic condition, the equation 

below represents the Conservation of (Kinetic) Energy for 

the same exact two colliding particles under the particular 

circumstance when their Potential Energy remains constant: 

Conservation of (Kinetic) Energy Equation. 

2

22

2

11

2

22

2

11
2

1

2

1

2

1

2

1
vmvmVmVm +=+ Footnote 2 

Conversely, for a non elastic condition, the work, ‘W’ 

performed by the impact of these same two particles is the 

difference between right- and left-handed sides of the 

Conservation of (Kinetic) Energy Equation, as follows: 

Work Performed Equation. 

)
2

1

2

1
(

2

1

2

1 2

22

2

11

2

22

2

11 vmvmVmVmW +−+=  Footnote 3 

The Coefficient of Restitution Equation is afforded below.  

It represents the degree of particle inelasticity involved 

during the collision, where complete elasticity occurs when 

ε = 1, and total inelasticity applies when ε = 0. 

The Coefficient of Restitution Equation. 

21

21

VV

vv

−

−
−=ε Footnote 4
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3.4.2.  Complex Quadratic Equation Reformatting. 

The Conservation of Linear Momentum Equation above is 

mathematically operated upon as follows: 

22112211 vmvmVmVm +=+  

)()( 222111 VvmvVm −=−  

11

22
21

vV

Vv
mm

−

−
=  

By substituting this above m1 expression into the Work 

Performed Equation below, the following reformat occurs: 

)
2

1

2

1
(

2

1

2

1 2

22

2

11

2

22

2

11 vmvmVmVmW +−+=  

)(
2

1
)(

2

1 2

2

2

22

2

1

2

11 vVmvVm −+−=  

)(
2

1
))((

2

1 2

2

2

22

2

1

2

1

11

22
2 vVmvV

vV

Vv
m −+−

−

−
=  

))((
2

1
))()((

2

1
222221111

11

22
2 vVvVmvVvV

vV

Vv
m +−++−

−

−
=  

))((
2

1
))((

2

1
2222211222 vVvVmvVVvm +−++−=  

)]())[((
2

1
1122222 vVvVvVm +−+−=  

)]())[((
2

1
1212222 vvVVvVm −+−−=  

From the Coefficient of Restitution Equation: 

21

21

VV

vv

−

−
−=ε  

)()( 2121 vvVV −−=−ε  

12 vv −=  

Substituting this result into the above derivation yields 

the following: 

)]())[((
2

1
2112222 VVVVvVmW −+−−= ε  

)1)()((
2

1
12222 ε−−−= VVvVm  

Notice that for the completely elastic condition when ε is 
set equal to 1, the total work accomplished, or heat 

dissipated during the collision, equals zero.  This means 

that the Conservation of (Kinetic) Energy Equation is 

maintained, where all particle velocity before the 

collision is translated into resultant velocities of the 

two respective particles after they collide. 
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Now, consider further that the two particles scrutinized in 

Section 3.4.1 are representative samples from a batch of 

other similar particles that also are undergoing multiple 

collisions under similar laboratory conditions.  Under this 

scenario, all particles also contain very nearly the same 

mass where, m1 = m2 = m. 

 

For this condition, the equation derived above, then 

reduces to: 

)1)()((
2

1
1222 ε−−−= VVvVmW  

For any given mass, ‘m’, and Coefficient of Restitution, 

‘ε’, the equation above personifies a Complex Quadratic 
Equation of three variables, V1, V2, and v2, represented as 

follows: 

)1(

2
))(( 1222

ε−
=−−

m

W
VVvV  

0
)1(

2
))(( 1222 =

−
−−−

εm

W
VVvV  

0]
)1(

2
[)( 21221

2

2 =
−

−++−
εm

W
vVVvVV  

Once again, exercising the Quadratic Formula shown below 

produces: 

a

acbb
V

2

42

2

−±−
=  

)1(2

]
)1(

2
)[1(4)()( 21

2

2121

2

ε−
−−+±+

=
m

W
vVvVvV

V  

Consider a collision that occurs when V1 is traveling in an 

opposite direction to V2.  When these velocity magnitudes 

are equal, then the following equation results: 

)1)(2)((
2

1
222 ε−−= VvVmW  

Complex Quadratic Equation for Work Produced when Two Particles of Constant 
Mass, Velocity and Restitution Collide. 

0)1)(( 222 =−−− εvVmVW  

Moreover, the two variables in the above equation may now 

be changed to: 

V2 = velocity before impact  

= initial velocity 

= vi 
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v2 = velocity after impact  

= final velocity 

= vf 

Under these conditions, the Coefficient of Restitution 

Equation reduces to: 

21

21

VV

vv

−

−
−=ε  

21

12

VV

vv

−

−
=  

2

2

2

2

V

v

−
=  

i

f

v

v

2

2
−=  

i

f

v

v
−=  

Hence, by substituting for V2, v2, and ε as indicated above, 
the Work Relationship in Terms of Mass, Velocity, and 

Degree of Elasticity evolves into the following equation: 

)1)((
i

f

fii
v

v
vvmvW +−=  

))((
i

fi

fii
v

vv
vvmv

+
−=  

)(
22

fi vvm −=  

This may be verified by substituting as follows into the 

Work Performed Equation re-listed below, where: 

i21 v-  V-  V ==  

f21 v-  v-  v ==  

m m m 21 ==  

)
2

1

2

1
(

2

1

2

1 2

22

2

11

2

22

2

11 vmvmVmVmW +−+=  

])(
2

1
)(

2

1
[)(

2

1
)(

2

1 2222

ffii vmvmvmvm +−−+−=  

)
2

1

2

1
(

2

1

2

1 2222

ffii mvmvmvmv +−+=  

22

fi mvmv −=  

Complex Quadratic Equation for Work Produced when Two Particles of Constant 
Mass and Velocity Collide. 

0)(
22

=−− fi vvmW  
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3.4.3.  Analysis. 

From the Complex Quadratic Equation for Work Produced when 

Two Particles of Constant Mass, Velocity and Restitution 

Collide above, it is deduced that work, ‘W’ increases with 

a decreasing Coefficient of Restitution, ‘ε’.  This 
indicates that the amount of work accumulated is greater 

for collisions which are more inelastic. 

 

This is analogous to a situation where a base ball is hit 

by a bat, and thereafter, by a rubber band.  Naturally, the 

former contact precipitates more noise, heat dissipation, 

and greater moment requiring resistance by the human body; 

all indicative of greater work being performed. 

 

Likewise, from Complex Quadratic Equation for Work Produced 

when Two Particles of Constant Mass and Velocity Collide 

above, a greater amount of work results when the initial 

velocity before collision, ‘vi’ becomes increased. 

 

And lastly, the resulting velocity after the collision, ‘vf’ 

reduces as greater percentages of initial velocities are 

converted into work. 

 

The well-known equations re-stated in Section 3.4.1, 

although appearing in prior literature, now, for the first 

time may benefit from the added Complex Quadratic Equation 

perspective afforded by this treatise. 
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SECTION 4.  COMPLEX QUADRATIC FUNCTIONS. 

Complex Quadratic Functions are curves that may be 

represented by linear and quadratic terms of multiple 

unknowns. 

4.1.  Complex Quadratic Function Development. 

Equation 19 shown below represents the corresponding 

Complex Quadratic Function for the Complex Quadratic 

Equation 14.  It may be established simply by replacing the 

zero appearing on the right-hand side of Equation 14 by the 

variable ‘y’. 

Equation 19.  The Complex Quadratic Function for Equation 14. 

yzzzzzz =−−+ ζζ 21

2

212

2

1 )3(  

Under the particular circumstance when ζ = 3 , Equation 19 

simplifies to: 

Equation 20.  Expression for Equation 19 when ζ = √3. 

yzzzzzz =−−+ 333 21

2

212

2

1  

Once setting z2 = 1 in Equation 20, it again reduces to: 

Equation 21.  Expression for Equation 20 when z2 = 1. 

3)331( 1

2

1 −−+ zz  = y 

The two z1 roots for Equation 21 may be ascertained via 

Quadratic Formula, once setting ‘y’ = 0. 

 

In short, this Equation 21 Quadratic Function represents a 

reduced Complex Quadratic Function [Ref. Equation 20] that 

may be solved via Quadratic Formula once setting y equal to 

zero. 

4.2.  Charting. 

Table 4 charts Equation 20 for the particular condition 

when its z2 value is equal to 1.  Accordingly, notice that 

all z2 entries equal 1. 

 

Table 5, Table 6, and Table 7, instead chart Equation 20 

for other particular conditions when their respective z2 

values are equal to the following: 

40.36397023   20 tan z  o

 2 ==  [Ref. Table 3] 

10.83909963-   140 tan z  o

 2 ==  [Ref. Table 3] 

5.67128182   tan260z  o

 2 ==  [Ref. Table 3] 
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Table 4.  Equation 20 Complex Quadratic Function for z2 = 1. 

 
 

z1 z2 z1
2
z2 z1z2

2
 -3√3z1z2 -√3 z1

2
z2 + z1z2

2
 - 3√3z1z2 - √3 = y 

5.67128182 1 32.16343748 5.67128182 -29.46884477 -1.732050808 6.6338237 

5 1 25 5 -25.98076211 -1.732050808 2.2871871 

4.574762424 1 20.92845124 4.574762424 -23.77116285 -1.732050808 0 

4 1 16 4 -20.78460969 -1.732050808 -2.51666 

3 1 9 3 -15.58845727 -1.732050808 -5.320508 

2 1 4 2 -10.39230485 -1.732050808 -6.124356 

1 1 1 1 -5.196152423 -1.732050808 -4.928203 

0.75 1 0.5625 0.75 -3.897114317 -1.732050808 -4.316665 

0.5 1 0.25 0.5 -2.598076211 -1.732050808 -3.580127 

0.363970234 1 0.132474331 0.363970234 -1.891244813 -1.732050808 -3.126851 

0.25 1 0.0625 0.25 -1.299038106 -1.732050808 -2.718589 

0 1 0 0 0 -1.732050808 -1.732051 

-0.25 1 0.0625 -0.25 1.299038106 -1.732050808 -0.620513 

-0.378610001 1 0.143345533 -0.378610001 1.967315274 -1.732050808 0 

-0.5 1 0.25 -0.5 2.598076211 -1.732050808 0.6160254 

-0.75 1 0.5625 -0.75 3.897114317 -1.732050808 1.9775635 

-0.839099631 1 0.704088191 -0.839099631 4.360089581 -1.732050808 2.4930273 

-1 1 1 -1 5.196152423 -1.732050808 3.4641016 
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Table 5.  Equation 20 Complex Quadratic Function for z2 = 0.363970234. 

z1 z2 z1
2
z2 z1z2

2
 -3√3z1z2 -√3 z1

2
z2 + z1z2

2
 – 3√3z1z2 - √3 = y 

5.67128182 0.363970234 11.70653387 0.751299266 -10.72578233 -1.732050808 0 

5 0.363970234 9.09925585 0.662371656 -9.456224066 -1.732050808 -1.426647 

4.574762424 0.363970234 7.617333294 0.606038593 -8.651995706 -1.732050808 -2.160675 

4 0.363970234 5.823523744 0.529897325 -7.564979253 -1.732050808 -2.943609 

3 0.363970234 3.275732106 0.397422994 -5.67373444 -1.732050808 -3.73263 

2 0.363970234 1.455880936 0.264948662 -3.782489626 -1.732050808 -3.793711 

1 0.363970234 0.363970234 0.132474331 -1.891244813 -1.732050808 -3.126851 

0.75 0.363970234 0.204733257 0.099355748 -1.41843361 -1.732050808 -2.846395 

0.5 0.363970234 0.090992559 0.066237166 -0.945622407 -1.732050808 -2.520443 

0.363970234 0.363970234 0.048216713 0.048216713 -0.688356817 -1.732050808 -2.323974 

0.25 0.363970234 0.02274814 0.033118583 -0.472811203 -1.732050808 -2.148995 

0 0.363970234 0 0 0 -1.732050808 -1.732051 

-0.25 0.363970234 0.02274814 -0.033118583 0.472811203 -1.732050808 -1.26961 

-0.378610001 0.363970234 0.052173507 -0.050156107 0.716044201 -1.732050808 -1.013989 

-0.5 0.363970234 0.090992559 -0.066237166 0.945622407 -1.732050808 -0.761673 

-0.75 0.363970234 0.204733257 -0.099355748 1.41843361 -1.732050808 -0.20824 

-0.839099631 0.363970234 0.256267144 -0.111159162 1.586942825 -1.732050808 0 

-1 0.363970234 0.363970234 -0.132474331 1.891244813 -1.732050808 0.3906899 
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Table 6.  Equation 20 Complex Quadratic Function for z2 = -0.839099631. 

z1 z2 z1
2
z2 z1z2

2
 -3√3z1z2 -√3 z1

2
z2 + z1z2

2
 - 3√3z1z2 - √3 = y 

5.67128182 -0.839099631 -26.98832852 3.993082556 24.72729677 -1.732050808 0 

5 -0.839099631 -20.97749078 3.520440954 21.8004479 -1.732050808 2.6113473 

4.574762424 -0.839099631 -17.56105571 3.221036198 19.94637398 -1.732050808 3.8743037 

4 -0.839099631 -13.4255941 2.816352763 17.44035832 -1.732050808 5.0990662 

3 -0.839099631 -7.551896679 2.112264572 13.08026874 -1.732050808 5.9085858 

2 -0.839099631 -3.356398524 1.408176381 8.720179161 -1.732050808 5.0399062 

1 -0.839099631 -0.839099631 0.704088191 4.360089581 -1.732050808 2.4930273 

0.75 -0.839099631 -0.471993542 0.528066143 3.270067185 -1.732050808 1.594089 

0.5 -0.839099631 -0.209774908 0.352044095 2.18004479 -1.732050808 0.5902632 

0.363970234 -0.839099631 -0.111159162 0.256267144 1.586942825 -1.732050808 0 

0.25 -0.839099631 -0.052443727 0.176022048 1.090022395 -1.732050808 -0.51845 

0 -0.839099631 0 0 0 -1.732050808 -1.732051 

-0.25 -0.839099631 -0.052443727 -0.176022048 -1.090022395 -1.732050808 -3.050539 

-0.378610001 -0.839099631 -0.120281184 -0.266574831 -1.65077352 -1.732050808 -3.76968 

-0.5 -0.839099631 -0.209774908 -0.352044095 -2.18004479 -1.732050808 -4.473915 

-0.75 -0.839099631 -0.471993542 -0.528066143 -3.270067185 -1.732050808 -6.002178 

-0.839099631 -0.839099631 -0.590800141 -0.590800141 -3.658549558 -1.732050808 -6.572201 

-1 -0.839099631 -0.839099631 -0.704088191 -4.360089581 -1.732050808 -7.635328 
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Table 7.  Equation 20 Complex Quadratic Function for z2 = 5.67128182. 

z1 z2 z1
2
z2 z1z2

2
 -3√3z1z2 -√3 z1

2
z2 + z1z2

2
 - 3√3z1z2 - √3 = y 

5.67128182 5.67128182 182.4079183 182.4079183 -167.1261236 -1.732050808 195.95766 

5 5.67128182 141.7820455 160.8171874 -147.3442238 -1.732050808 153.52296 

4.574762424 5.67128182 118.691145 147.1400852 -134.8129637 -1.732050808 129.28622 

4 5.67128182 90.74050912 128.6537499 -117.8753791 -1.732050808 99.786829 

3 5.67128182 51.04153638 96.49031245 -88.40653431 -1.732050808 57.393264 

2 5.67128182 22.68512728 64.32687496 -58.93768954 -1.732050808 26.342262 

1 5.67128182 5.67128182 32.16343748 -29.46884477 -1.732050808 6.6338237 

0.75 5.67128182 3.190096024 24.12257811 -22.10163358 -1.732050808 3.4789898 

0.5 5.67128182 1.417820455 16.08171874 -14.73442238 -1.732050808 1.033066 

0.363970234 5.67128182 0.751299266 11.70653387 -10.72578233 -1.732050808 0 

0.25 5.67128182 0.354455114 8.04085937 -7.367211192 -1.732050808 -0.703948 

0 5.67128182 0 0 0 -1.732050808 -1.732051 

-0.25 5.67128182 0.354455114 -8.04085937 7.367211192 -1.732050808 -2.051244 

-0.378610001 5.67128182 0.812952914 -12.1773991 11.15719935 -1.732050808 -1.939298 

-0.5 5.67128182 1.417820455 -16.08171874 14.73442238 -1.732050808 -1.661527 

-0.75 5.67128182 3.190096024 -24.12257811 22.10163358 -1.732050808 -0.562899 

-0.839099631 5.67128182 3.993082556 -26.98832852 24.72729677 -1.732050808 0 

-1 5.67128182 5.67128182 -32.16343748 29.46884477 -1.732050808 1.2446383 
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4.3.  Graphs. 

The Equation 19 Complex Quadratic Function now can be 

plotted.  This enables actual viewing of the very curves 

that Equation 14 roots apply to under the particular 

circumstance when 3=ζ . 

 

Figures 3 thru 6 depict graphs for Tables 4 thru 7, 

respectively.  They map z1 on their respective x-axes and 

give corresponding values for 333 21

2

212

2

1 −−+ zzzzzz  on their 

y-axis for: 

1z  2 =  [Ref. Figure 3] 

40.36397023  z  2 =  [Ref. Figure 4] 

10.83909963-  z  2 =  [Ref. Figure 5] 

5.67128182  z  2 =  [Ref. Figure 6] 

Corresponding roots set values are as follows (Ref. Table 

3): 

For z2 = 1,  

z1 = 4.574762424 and -0.378610001 

For z2 = 0.363970234, 

z1 = -0.839099631 and 5.67128182 

For z2 = -0.839099631, 

z1 = 0.363970234 and 5.67128182 

For z2 = 5.67128182, 

z1 = 0.363970234 and -0.839099631 

 

Each of the four independent root sets noted above arise 

when their respective curves cross the x-axis – i.e.; when 

y = 0.  All four root sets apply to Equation 20, or for 

that matter, Equation 19 when ζ = 3 . 

 

For each particular z2 value, a reduced Complex Quadratic 

Function may be calculated for Equation 20 that may be 

solved via Quadratic Formula once setting y equal to zero.  

These determinations are denoted as labels on the 

respective y-axes of Figures 3 thru 6, respectively. As 

reduced Complex Quadratic Functions, or Quadratic 

Functions, only two roots are produced at points where the 

respective curves cross their x-axes. 
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Naturally, the ordinate label for Figure 3 is denoted by 

Equation 21. 

For Figure 4, ordinate label development is shown below: 

yzzzzzz =−−+ 333 21

2

212

2

1  [Ref. Equation 20] 

yzzzzz =−−+ 3)33( 12

2

2

2

12  

yzz =−−+ 3)]363970234.0(33)363970234.0[()363970234.0( 1

22

1  

yzz =−−+ 3)]363970234.0(33)363970234.0[()363970234.0( 1

22

1  

  yzz =−− 3758770483.1)363970234.0( 1

2

1  

Where, for  

Figure 5: 

    yzzzzzz =−−+ 333 21

2

212

2

1  

   yzzzzz =−−+ 3)33( 12

2

2

2

12  

yzz =−−−−+− 3)]839099631.0(33)839099631.0[()839099631.0( 1

22

1  

   yzz =−+− 3064177772.5)839099631.0( 1

2

1  

And, for Figure 6: 

yzzzzzz =−−+ 333 21

2

212

2

1  [Ref. Equation 20] 

   yzzzzz =−−+ 3)33( 12

2

2

2

12  

yzz =−−+ 3)]67128182.5(33)67128182.5[()67128182.5( 1

22

1  

yzz =−+ 3694592711.2)67128182.5( 1

2

1  

Figure 3.  Graph of z1
2z2 + z1z2

2 - 3√3z1z2 - √3 = y,  for z2 = 1. 
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Figure 4.  Graph of z1
2z2 + z1z2

2 - 3√3z1z2 - √3 = y,  for z2 = 0.363970234. 

 

Figure 5.  Graph of z1
2z2 + z1z2

2 - 3√3z1z2 - √3 = y,  for z2 = -0.839099631. 
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Figure 6.  Graph of z1
2z2 + z1z2

2 - 3√3z1z2 - √3 = y,  for z2 = 5.67128182 
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SECTION 5.  CUBIC EQUATIONS AND ASSOCIATED FUNCTIONS. 

5.1.  Cubic Equation Development. 

Per Section 2.4.3, the roots for Equation 3 are: 

)240(tan z

)120tan(z

tanz

o

3

2

1

+=

+=

=

θ

θ

θ
o
 

This may be interpreted to mean that three distinct roots 

of z1, z2, and z3 exist which satisfy Equation 3 for any 

arbitrary, given value of ζ = tan (3θ).  Accordingly, any of 

these z1, z2, or z3 root nomenclatures may be substituted 

back into Equation 3 for the tan θ in order to produce, or 
render, the following two sets of equations: 

Equation 22.  Equation 3 Expression when ‘z1’ = tangent θ. 

)3z - (1 -)3(zz
2

11

3

1 ζ=  

Equation 23.  Equation 3 Expression for ‘z2’ = tan (θ + 120o) or ‘z3’ = tan (θ + 240o). 

)3z - (1 -)3(zz
2

22

3

2 ζ=  

Or, 

)3z - (1 -)3(zz
2

33

3

3 ζ=  

Secondly, when considering Equation 22 it follows that: 

0)3z - (1 )3(zz
2

11

3

1 =+− ζ  

And, when ζ = 3 , the following equation is arrived at: 

Equation 24.  Expression for Equation 22 when ζ = √3. 

0)3z - (13 )3(zz
2

11

3

1 =+−  

5.2.  Elevation of Complex Quadratic Equations to Cubic Equations.  

5.2.1.  Equation Development. 

Complex Quadratic Equations may be transformed into a 

variety of cubic formats.  This may be demonstrated by re-

arranging Equation 22 and Equation 23 into the following 

set of six new representations: 

3

)3z - (1  + z
z

2

1

3

1
1

ζ
=  

3

)3z - (1  + z
z

2

2

3

2
2

ζ
=  

2

1

3

11

31

3

z

zz

−

−
=ζ  

ζ

ζ

3

 3zz
z 1

3

12

1

+−
=  

ζ

ζ

3

 3zz
z 2

3

22

2

+−
=  

2

2

3

22

31

3

z

zz

−

−
=ζ  
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From these six equations above, any of the left-hand terms 

may be substituted into Complex Quadratic Equation 14, 

thereby producing transformations in cubic form. 

 

With, six equations being available for substitution, a 

large variety of transformations can be achieved.  

Derivations for a few of these transformations are given 

below: 

Where, 

0)3( 21

2

212

2

1 =−−+ ζζ zzzzzz  [Ref. Equation 14] 

0]
3

)31(
)[3(

2

1

3

1
2

2

212

2

1 =−
−+

−+ ζ
ζ

ζ
zz

zzzzz

0)]31()[(
2

1

3

12

2

212

2

1 =−−+−+ ζζζ zzzzzzz  

0)31(
2

12

2

2

3

1

2

212

2

1 =−−−−+ ζζζ zzzzzzzz  

03 2

2

1

2

2

2

2

3

1

2

212

2

1 =−+−−+ ζζζζ zzzzzzzzz  

0)1()()31( 2

2

21

2

2

2

12

3

1 =+−+++− zzzzzzz ζζζζ  

0)1(
)()31(

2

2

21

2

2

2

12

3

1 =++−
+

− z
zz

zzzz ζ
ζζ

ζ
 

0
1)31(

2

221

2
2

1

3

1 =
+

+−
+

−
z

zzz
zz

ζ

ζζ

ζ
 

Where, 

0)3( 21

2

212

2

1 =−−+ ζζ zzzzzz  [Ref. Equation 14] 

0)3()
3

3
( 21

2

3

2
12

2

1 =−−
+−

+ ζζ
ζ

ζ
zz

zz
zzz  

03)3()3(3 2

21

2

2

3

212

2

1 =−−+−+ ζζζζ zzzzzzz  

0
3

)3(33
1

2

2

2

212

3

2 =−−++−
z

zzzzz
ζ

ζζζ  

0]
3

[)1(3
1

2

1
2

2

1

3

2 =
−

+−−+
z

z
zzz

ζζ
ζζ  

Where, 

0)3( 21

2

212

2

1 =−−+ ζζ zzzzzz  [Ref. Equation 14] 

0
31

3
)

31

3
)(3(

2

2

3

22
212

2

3

222

212

2

1 =
−

−
−

−

−
−+

z

zz
zz

z

zz
zzzz  

0)3()3)(3()31)((
3

2221

3

22

2

2

2

212

2

1 =−−−−−+ zzzzzzzzzzz  

0)3()39()33(
3

22

4

21

2

21

4

21

3

2

2

1

2

212

2

1 =−−−−−−+ zzzzzzzzzzzzzz  

0)3()93()33( 2

3

2

2

21

4

21

4

21

3

2

2

1

2

212

2

1 =−+−+−−+ zzzzzzzzzzzzzz  

0)3(8)31( 2

2

1

2

21

3

2

2

1 =−+−− zzzzzz  
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Which further reduces to: 

0)3(8)31(
2

121

2

2

2

1 =−+−− zzzzz  

0
31

3
)

31

8
(

2

1

2

1
22

1

12

2 =
−

−
+

−
−

z

z
z

z

z
z  

Where, 

0)3( 21

2

212

2

1 =−−+ ζζ zzzzzz  [Ref. Equation 14] 

0
31

3
]

31

3
)[3(

2

1

3

11
212

2

3

222

212

2

1 =
−

−
−

−

−
−+

z

zz
zz

z

zz
zzzz  

0)3(]3)[3()31)((
3

1121

3

22

2

2

2

212

2

1 =−−−−−+ zzzzzzzzzzz  

0)3()39()33(
3

11

4

21

2

21

4

21

3

2

2

1

2

212

2

1 =−−−−−−+ zzzzzzzzzzzzzz  

0)3()93()33( 1

3

1

2

21

4

21

4

21

3

2

2

1

2

212

2

1 =−+−+−−+ zzzzzzzzzzzzzz  

0)38()3( 1

2

2

2

1

3

22

3

1 =+−−+ zzzzzz  

Which reduces to: 

0)38()3(
2

21

3

22

2

1 =+−−+ zzzzz  

5.2.2.  Verification. 

From the above section, it is obvious that Complex 

Quadratic Equation 0)3(8)31(
2

121

2

2

2

1 =−+−− zzzzz  represents a 

reduction of the Cubic Equation 0)3(8)31( 2

2

1

2

21

3

2

2

1 =−+−− zzzzzz  

which resulted as a transformation of the original Equation 

14 Complex Quadratic 0)3( 21

2

212

2

1 =−−+ ζζ zzzzzz . 

 

Nevertheless, it should not be attempted to resolve either 

of such transformations in terms of their Equation 14 

predecessor simply because they represent distinct sets, or 

families of constituent roots. 

 

Hence, unless more specific information becomes afforded 

pertaining to which particular set of unknowns requires 

evaluation, then these Complex Quadratic Equations, as 

stand-alone documents, even in combination, cannot render 

further detailed resolution. 

 

However, once additional information becomes supplied, 

these equations prove useful. 

For example for 

40.36397023  20 cos z o

 1 == : 

0
)31(

)3(
]

)31(

8
[

2

1

2

1
22

1

12

2 =
−

−
+

−
−

z

z
z

z

z
z   
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0
)363970234.0(31

3)363970234.0(
]

)363970234.0(31

)363970234.0(8
[

2

2

22

2

2 =
−

−
+

−
− zz  

0
363970234.0

732050808.1

363970234.0

758770484.1
2

2

2 =−− zz  

0758770483.483218219.4 2

2

2 =−− zz  

Or, from the Quadratic Formula: 

a

acbb
z

2

42 −±−
=  

)1(2

)758770483.4)(1(4)83218219.4(83218219.4 2

2

−−±+
=z  

)1(2

03508193.1934998472.2383218219.4 +±+
=  

)1(2

38506665.4283218219.4 ±+
=    

31-0.8390996,67128182.5+=  

)2tan(),4tan( θθ −=  

This result is identical to the z2 root determination 

afforded in Table 2.  Hence, from the above analysis, this 

transformed Complex Quadratic Equation also is validated. 

5.3.  Cubic Function Development. 

Replacing the zero appearing on the right-hand side of 

Cubic Equation 24 by the variable ‘y’ establishes its 

corresponding Cubic Function as follows: 

Equation 25.  The Cubic Function for Equation 24. 

y)3z - (13 )3(zz
2

11

3

1 =+−  

5.4 Charting. 

Table 8 applies five distinct values of z1 to Equation 24.  

The first two z1 entries represent values of the roots to 

Equation 18; the last three represent values for tan 20o, 

tan (20o + 120o), and tan (20o + 240o), respectively. 

Table 8.  Equation 24 Listing for Five Independent z1 Values 

z1 z1
3
 -3z1 √3(1-3z1

2
) z1

3
 - 3z1 + √3(1-3z1

2
) = 0 

4.574762424 95.74269231 -13.72428727 -107.0153718 -24.99696678 

-0.378610001 -0.054272052 1.135830003 0.98720557 2.068763521 

0.363970234 0.048216713 -1.091910702 1.04369399 0 

-0.839099631 -0.590800141 2.517298893 -1.926498751 0 

5.67128182 182.4079183 -17.01384546 -165.3940728 0 

ζ



 

 

44 

 

Columns two, three, and four present calculated values for 

each of the terms expressed in Equation 24.  The last 

column gives respective summations for the entire equation. 

 

Since roots occur only when selected z1 values satisfy 

Equation 24, they become realized when last column 

summations equal zero.  As indicated, only the bottom three 

rows reflect this.  Hence, the top two z1 selections do not 

represent roots for Equation 24.   

 

And, since Equation 24 qualifies as a Cubic Equation, 

naturally it exhibits only three roots. 

 

Moreover, Table 9 depicts calculations of the Equation 25 

Cubic Function for same z1 entries applied in Tables 4 thru 

7, respectively. 

 

Columns two thru four depict calculated values for 

respective Equation 25 terms.  Again, the last column in 

the table enumerates totals for the Equation 25 y function. 

 

Table 9.  Plot of Equation 25 Cubic  Function. 

z1 z1
3
 -3z1 √3(1-3z1

2
) z1

3
 -3z1 + √3(1-3z1

2
) = y 

5.67128182 182.4079183 -17.01384546 -165.3940728 0 

5 125 -15 -128.1717598 -18.17175979 

4.574762424 95.74269231 -13.72428727 -107.0153718 -24.99696678 

4 64 -12 -81.40638798 -29.40638798 

3 27 -9 -45.03332101 -27.03332101 

2 8 -6 -19.05255889 -17.05255889 

1 1 -3 -3.464101616 -5.464101616 

0.75 0.421875 -2.25 -1.190784931 -3.018909931 

0.5 0.125 -1.5 0.433012702 -0.941987298 

0.363970234 0.048216713 -1.091910702 1.043693991 0 

0.25 0.015625 -0.75 1.407291282 0.672916282 

0 0 0 1.732050808 1.732050808 

-0.25 -0.015625 0.75 1.407291282 2.141666282 

-0.378610001 -0.054272052 1.135830003 0.98720557 2.068763521 

-0.5 -0.125 1.5 0.433012702 1.808012702 

-0.75 -0.421875 2.25 -1.190784931 0.63734007 

-0.839099631 -0.590800141 2.517298893 -1.926498751 0 

-1 -1 3 -3.464101616 -1.464101616 
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Per Table 8, the three z1 roots for the Equation 24 cubic 

are identified as 0.363970234, -0.839099631, and 5.67128182 

respectively. 

 

Accordingly, they are depicted as bold, italicized numbers 

in Table 9 in order to distinguish them as Equation 25 

roots also. 

5.5 Graphs. 

Figure 7 presents the plot for Table 9.  It maps z1 values 

on its x-axis and corresponding calculations for 

)3z - (13 )3(zz
2

11

3

1 +−  on its y-axis.  As a Cubic Function, three 

roots are illustrated at points where the curve crosses the 

x-axis (i.e.; where y = 0).  

 

As shown, respective roots when y = 0 are: z1 = 0.363970234, 

-0.839099631, and 5.67128182. 

Figure 7.  Graph of z1
3 – 3z1 + √3(1 - 3z1

2) = y. 

 
 



 

 

46 

SECTION 6.  COMPARISON OF COMPLEX QUADRATICS AND CUBICS. 

This section identifies similarities and differences that 

stem between Complex Quadratics and their corresponding 

Cubic Transformations. 

 

In order to assist in this analysis, a Hierarchy Chart has 

been created which exhibits the following attributes: 

• It categorizes equations and functions by section, 

where 

o Section 2 depicts Fundamental Information 

o Section 3 depicts Complex Quadratic Equations 

o Section 4 depicts Complex Quadratic Functions 

o Section 5 depicts Cubic Equations and Functions    

• It expresses parent lineage, or paths of development, 

which, by quick glance, help to determine various 

similarities and differences that exist between the 

equation types expressed above 

• It identifies distinguishing details that exist 

between respective equations, in order to rapidly 

segregate those which possess identical z1 or ζ  values 

in common. 

 

Equations 1,2, and 4 thru 10 do not appear in Table 10.  

These may be used to contribute to the development of 

additional, future Hierarchy Charts which presently fall 

outside of the confines of this analysis.  

 

Development of the various equations and functions 

appearing in Table 10 is summarized below by section: 

FOR SECTION 2.  FUNDAMENTAL INFORMATION  

• Equations 11 thru 13 represent reductions of Cubic 

Equation 3 based on the fact that its roots can be 

characterized as follows:  

z1 = tan θ   = tan θ1 

z2 = tan (θ + 120
o)  = tan θ2 = 

θ

θ

tan31

3tan

+

−
 

z3 = tan (θ + 240
o)  = tan θ3 = 

θ

θ

tan31

3tan

−

+
 



 

 

47 

Table 10.  Hierarchy Chart. 
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FOR SECTION 3.  COMPLEX QUADRATIC EQUATIONS. 

• The Complex Quadratic Equation 14 is merely a 

reformatting of the Equation 11 and 12 reductions 

• Equations 15 and 16 were derived from Equation 14 in 

order to express its root characterizations in a 

format representative of the Quadratic Formula 

• Equation 17 relates Equation 14 for the unique case 

when 3  is substituted for ζ  

• Likewise, Equation 18 depicts the Equation 17 

characterization under the particular condition when z2 

= 1; or, of course when Equation 14 exhibits the 

following values of ζ  = 3 , and z2 = 1 

FOR SECTION 4.  COMPLEX QUADRATIC FUNCTIONS. 

• Equation 19 represents the Quadratic Function for the 

Complex Quadratic Equation 14.  It consists of 

replacing a variable designation of ‘y’ for the zero 

on the right-hand side of Equation 14 

• Equation 20 depicts the Equation 19 Complex Quadratic 

Function when 3  is substituted for ζ .  Accordingly, 

it represents the Complex Quadratic Function for 

Complex Quadratic Equation 14 when ζ  = 3  

• Likewise, Equation 21 represents the Equation 20 

Complex Quadratic Function when z2 = 1.  Accordingly, 

it represents the Complex Quadratic Function for 

Complex Quadratic Equation 14 when ζ  = 3 , and z2 = 1 

FOR SECTION 5.  CUBIC EQUATIONS AND ASSOCIATED FUNCTIONS. 

• Substitution of the z1 thru z2 roots (repeated below) 

back into Equation 3 enables establishment of Cubic 

Equations 22 and 23, respectively. 

z1 = tan θ   = tan θ1 

z2 = tan (θ + 120
o)  = tan θ2 = 

θ

θ

tan31

3tan

+

−
 

• Cubic Equation 24 depicts Equation 22 for the unique 

case when 3  is substituted for ζ . 

• Equation 25 represents the Cubic Function for the 

Cubic Equation 24.  It consists of replacing a 

variable designation of ‘y’ for the zero on the right-

hand side of Equation 24. 
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6.1. Similarities 

Independent equations which are derived or stem from the 

same parent equation exhibit certain similarities in 

common.  This applies to a whole gamut of derivations and 

transformations that may be categorized into groups of 

Complex Quadratic and Cubic Equations, in addition to their 

respective Functions. 

Section 3 Complex Quadratic Equations which depict the sum 

of their terms as zero signify respective equalities for 

resolving, or solving for, sets of roots, or root families. 

 
Root sets, as represented either in z1 or z2, consist of two 

values each.  For z1 they occur for any constant value of 

z2; and vice versa.  Equation 15 and Equation 16, the only 

equations presented in Section 3 which are not portrayed to 

equal zero, calculate respective root sets for any given 

value of ζ  and the other variable via the Quadratic 

Formula. 

 

Complex Quadratic Functions may be converted to their 

corresponding Complex Quadratic Equations by simply setting 

their respective variable ‘y’ back to zero.  Hence, their 

root sets must represent numerical values which satisfy 

their corresponding Complex Quadratic Equations. 

 

In other words, root sets for Complex Quadratic Functions 

and their corresponding Complex Quadratic Equations must be 

exactly the same! 

 

So, Table 4 focuses upon the unique circumstance when z2 = 

1.  Table 4 roots constitute conditions when z1 values are 

such that the Equation 20 Complex Quadratic Function totals 

to, or equals zero. 

 

This is equivalent to solving the Complex Quadratic 

Equation 14 for ζ = 3  and z2 = 1; or merely solving the 

Complex Quadratic Equation 17 for z2 = 1 (Ref. Table 3); or, 

lastly solving the Complex Quadratic Equation 18 [Ref. 

Table 10]. 

 

Accordingly, Table 3, and Table 4, respectively, share a 

common root set.  This is to be expected because: 

• Table 3, becomes synonymous with a portion of Table 4 

only for rows when its z2 value equals unity. 

• Table 4, becomes synonymous with a portion of Table 3 

only for rows when its right-hand column equals zero. 
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More specifically, this common root set occurs when z1 

equals either 4.574762424, or -0.378610001.  Naturally, 

this Quadratic Equation 18 root set relates to a 

corresponding Equation 21 Quadratic Function [Ref. Table 

10] which may be viewed pictorially via Figure 3. 

 

Moreover, according to Table 10, Equation 20 represents the 

Complex Quadratic Function for its corresponding Complex 

Quadratic Equation 17. 

 

Table 3, which appears in Section 3, charts four root sets 

of z2 for the Complex Quadratic Equation 17. 

 

Table 4, Table 5, Table 6, and Table 7, which appear in 

Section 4, identify these same exact four root sets of z2, 

respectively, for Equation 20. 

 

These common root sets are specified as follows: 

Considering the case when z2 is set equal to 1, the 

following should hold true: 

• Per Table 3,  respective z1 entries of 4.574762424 and 

-0.378610001 depict roots for the Equation 17 -- 

Complex Quadratic Equation 

• Per Table 4, respective  z1 entries of 4.574762424 and 

-0.378610001 depict roots for the Equation 20 -- 

Complex Quadratic Function 

 

Accordingly, Table 4 depicts the dual roots z1 = 4.574762424 

and -0.378610001, respectively, as bold, italicized numbers 

in order to further distinguish them as Equation 17 roots. 

 

Considering the case when z2 is set equal to 0.363970234, 

the following should hold true: 

• Per Table 3, respective z1 entries of -0.839099631 and 

5.67128182 depict roots for the Equation 17 -- Complex 

Quadratic Equation 

• Per Table 5, respective  z1 entries of -0.839099631 and 

5.67128182 depict roots for the Equation 20 -- Complex 

Quadratic Function 

So, Table 5 depicts the dual roots z1 = -0.839099631 and 

5.67128182, respectively, as bold, italicized numbers in 

order to further distinguish them as Equation 17 roots. 
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Considering the case when z2 is set equal to -0.839099631, 

the following should hold true: 

• Per Table 3, respective z1 entries of 0.363970234 and 

5.67128182 depict roots for the Equation 17 -- Complex 

Quadratic Equation 

• Per Table 6, respective  z1 entries of 0.363970234 and 

5.67128182 depict roots for the Equation 20 -- Complex 

Quadratic Function 

So, Table 6 depicts the dual roots z1 = 0.363970234 and 

5.67128182, respectively, as bold, italicized numbers in 

order to further distinguish them as Equation 17  roots. 

Considering the case when z2 is set equal to 5.67128182, the 

following should hold true: 

• Per Table 3, respective z1 entries of 0.363970234 and -

0.839099631 depict roots for the Equation 17  -- 

Complex Quadratic Equation 

• Per Table 7, respective  z1 entries of 0.363970234 and 

-0.839099631 depict roots for the Equation 20 -- 

Complex Quadratic Function 

So, Table 7 depicts the dual roots z1 = 0.363970234 and -

0.839099631, respectively, as bold, italicized numbers in 

order to further distinguish them as Equation 17 roots. 

 

Table 9 roots occur when z1 values permit the Equation 25 

Complex Quadratic Function to equal zero.  As such, these 

roots also must satisfy its corresponding Complex Quadratic 

Equation 24, as depicted in Table 8. 

 

Since these Tables 8 and 9 appear in Section 5, which 

addresses Cubic Equations and their associated Functions, 

they both express the exact same three distinct roots.  

Moreover, these same roots also apply to Tables 5 thru 7. 

 

Table 5 thru 7 and 9 plots are illustrated in Figures 4 

thru 7, respectively.  Below, they are superimposed in 

Figure 8 in order to disclose their common root set 

characterizations. 

 

Respective common roots are given below: 

• Figure 4 roots are -0.839099631 and 5.67128182 

• Figure 5 roots are  0.363970234 and 5.67128182 

• Figure 6 roots are  0.363970234 and -0.839099631 
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• Figure 7 roots are 0.363970234, -0.839099631 and 

5.67128182   

 

For the curves described in Figure 4, Figure 5, and  Figure 

6, y is represented by the Equation 20 Complex Quadratic 

Function; whereby, for Figure 7, y is designated by the 

Equation 25 Cubic Function. 

 

Such Complex Quadratic Functions referred to in Figure 4, 

Figure 5, and  Figure 6 exhibit only two roots each.  Notice 

that together they encompass all of the possibilities for 

identifying two out of three roots of the Figure 7 Cubic 

Function plot. 

 

Figure 8.  Common Root Set Relationships. 
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6.2. Differences.  

Since Section 3 and 4 entries in Table 10 represent 

Quadratic characterizations while Equation 3, as well as, 

Section 5 equations and their associated function(s) are 

Cubic in nature, it seems very plausible that certain 

differences should exist between such representations. 

 

One difference is that Complex Quadratic Equations can 

encompass roots that are not contained in corresponding 

Cubic Equations.  For example, Table 3 demonstrates that 

the Complex Quadratic Equation 17 embellishes root sets 

which are supplemental to those which satisfy Cubic 

Equation 24, as expressed in Table 8.  Even though Table 3 

lists just four values of z2, there are an infinite number 

of other values whose roots sets will not satisfy Equation 

24, particularly because the latter Cubic Equation can 

contain only three root values. 

 

This is further demonstrated in Table 9 where roots become 

realized only when z1 values permit the Equation 25 function 

to equal zero.  Per this table, the root set of z1 equals 

either 4.574762424, or -0.378610001 does not allow the 

summation of the Equation 25 function to equal zero.  

Hence, although this root set satisfies the Complex 

Quadratic Equation 17 (Table 3), it applies neither to the 

Equation 25 Cubic Function, nor to the Equation 24 Cubic 

Equation that it modifies.  Nor does this root set 

represent roots for the completely independent Parent Cubic 

Equation 3 from which Complex Quadratic Equation 17 

originates [Ref. Table 10]. 
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SECTION 7.  LINEARIZING THE CUBIC. 

This section demonstrates that Cubic Equations can be 

expressed not only in terms of Quadratic and Complex 

Quadratic transformations, but also as direct Linear 

reductions.    

 

This process may be viewed as actually skipping over 

quadratic representations entirely, or transforming from 

Cubic Equation directly into an associated Linear 

reduction! 

 

This is accomplished as follows: 

θθθ cossin2)2sin( =  

)3sin()2sin( θθθ −=  

θθθθ sin)3cos(cos)3sin( −=  

θτθη sincos −=  

Or, 

θτθηθθ sincoscossin2 −=  

θ

τ

θ

η

cossin
2 −=  

 

Then, a straight line, linear transformation for Cubic 

Equation entities τ, η, sin θ, and cos θ becomes, 

Equation 26.  Linearization of the Cubic. 

ηθη

τ

θ

2
)

cos

1
(

sin

1
+=  

 

Which, of course, assumes its linear form as: 

bmxy +=  

Hence, the Linear Equation 26 characterizes θsin/1  and θcos/1  

in terms of the known coefficients 2, η, and τ, where: 

 

• 
)3tan(

11

θζη

τ
==  represents the slope of straight line 

• 
η

2
 determines the ‘y’ intercept 

• 
θcos

1
 signifies the ‘x’ coordinate 

• 
θsin

1
 identifies the corresponding ‘y’ ordinate 
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Similarly, Straight Line Linearization for y = 1/sin(2θ), and 1/sin (4θ), respectively, 
for the condition when θ = 20o is established below 

Table 11.  Linearizing the Cubic Development. 

)3sin()2sin( θθθ −=  )23sin(5sin)4sin( θθθθ +==  )53sin()8sin( θθθ +=  

θθθθ sin)3cos(cos)3sin( −=  )2sin()3cos()2cos()3sin( θθθθ +=  )5sin()3cos()5cos()3sin( θθθθ +=  

θτθη sincos −=  )2sin()2cos( θτθη +=  )100sin()3cos()100cos()3sin( oo θθ +=  

  )80sin()3cos()80cos()3sin( oo θθ +−=  

  )4sin()3cos()4cos()3sin( θθθθ +−=  

  )4sin()4cos( θτθη +−=  

Where: Where: Where: 

θθθ cossin2)2sin( = , 

 

)2cos()2sin(2)4sin( θθθ = , 

where: 

)4cos()4sin(2)8sin( θθθ = , 

where: 

 

Or, 

 

Or, 

 

Or, 

 

θθθτθη cossin2sincos =−  

 

)2cos()2sin(2)2sin()2cos( θθθτθη =+  

 

)4cos()4sin(2)4sin()4cos( θθθτθη =+−  

2
cossin

=−
θ

τ

θ

η
 2

)2cos()2sin(
=+

θ

τ

θ

η
 2

)4cos()4sin(
=+−

θ

τ

θ

η
 

ηθη

τ

θ

2
)

cos

1
(

sin

1
+=  

ηθη

τ

θ

2
]

)2cos(

1
[

)2sin(

1
+−=  

ηθη

τ

θ

2
]

)4cos(

1
[

)4sin(

1
−=  

KNOWN STRAIGHT LINE AC 

EXTENDED (Ref. Figure 9) 

KNOWN STRAIGHT LINE AD 

EXTENDED (Ref. Figure 9) 

KNOWN STRAIGHT LINE BF EXTENDED 

(Ref. Figure 9) 
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Figure 9.  Linearizing the Cubic. 
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Considering the respective lengths of 1/sinθ, 1/sin(2θ), 
and 1/sin(4θ) given in Figure 9, from the geometry 
afforded: 

LG = 1 

KH = 1 

JI = 1.  

Where, 

• LG is perpendicular to line OC  

• KH is perpendicular to line OD 

• JI is perpendicular to line OF  
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SECTION 8.  IDENTITIES. 

Identities encompass indeterminate equations whose formats 

defy mathematical resolution.   

 

Such definition applies even to Cubic Equation formats 

which express only singular unknown quantities such as 

those enumerated in Table 12.   

Table 12.  Cubic Equivalency Table. 

4/cos4/3cos3 τθθ +=  [Ref. Equation 1] 

4/sin4/3sin 3 ηθθ −=  [Ref. Equation 2] 

)tan31(tan3tan 23 θζθ −−=  [Ref. Equation 3] 

Each of these above equations, in itself, is considered to 

be extraordinary in that it manifests only a singular 

unknown but, nevertheless, still defies mathematical 

resolution! 

 

Reductions of Cubic or even Higher Order Equations can be 

achieved by substituting respective right-hand lower order 

terms of equations presented in Table 12 for left-hand 

cubic equivalencies appearing in other equations. 

 

For example, with regard to Quartic Equations, applicable 

cubic expressions expressed in Table 12 need to be 

substituted for twice, in order to reduce into Quadratic 

Equation format. 

 

In some identities, the coefficients of all included terms 

each equate to zero (Ref. Section 8.3).   

 

In others, numerical summations of respective terms on each 

side of the equation may equate.  Equality is still 

maintained because left-hand side and right-hand terms sum 

to zero (Ref. Section 8.4). 

 

Hence, such identities cannot provide quantitative 

indication of unknown numerical value.  However, they can 

validate that mathematical calculations conducted during 

the reduction process were performed correctly! 

 

A constituent geometry for generating cosine related 

identities in presented in Section 8.1. 

 

The practice of Mathematical Closure may be applied in 

order to resolve such annoying identities (Ref. Section 

8.5). 
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8.1.  The Identity Geometry. 

Figure 10 portrays a constituent geometry for producing, or 

generating, cosine related identities. 

Figure 10.  Geometry for Generating Identities. 

 
Its construction centers upon equilateral triangle ACD 

where member AD  is placed onto the x-axis of a mutually 

orthogonal coordinate system, with vertex A located at its 

origin. 

 

Next, right triangle ACB is constructed such that its 

hypotenuse AB  is equal to unity; also, BAC∠  is to be 

designated as θ. 
 

Since equilateral triangle ACD contains 60o vertices:  
o60=∠CAD  

3

60

3

o

=
∠CAD

 

o20=  
Hence, when: 

o
BAC 20==∠ θ  

Hypotenuse AB  trisects CAD∠  such that: 

θ=
∠

3

CAD
 

θ3=∠CAD  

Where CE  represents an extension to line BC  such that 

Point E represents the straight line’s intersection with 

the y-axis:   
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AEC∠  and CAE∠  are complementary, as are CAD∠  and 

CAE∠ .  This equates as follows:  

CAECADCAEAEC
o ∠+∠=∠+∠=90  

CAECAEAEC ∠+=∠+∠ θ3  

Or simply, 

θ3=∠AEC  

Furthermore where, 

CADBADBAC ∠=∠+∠  

θθ 3=∠+ BAD  

θ2=∠BAD  

 
From the resulting Figure 10 geometry, the lengths 

indicated below are rather easily determined. 

θcos=== ADCDAC  

θsin=BC  

)2cos( θ=AF  

)2sin( θ=BF  

3/AC  =/AC =  )an(3/AC = EC ζθt  

 3/AC2 = /2)3/(AC = /AC =)in(3/AC = AE ηθs  

8.2.  Second and Fourth Order Complex Quadratic Identities. 

The Straight Line Equation for line AC  is: 

mxy =  

x)3tan( θ=  

xζ=  

With line EB being perpendicular to line AC , its Linear 

Equation is as follows: 

bxmy +−= )/1(  

AEx +−= ))3tan(/1( θ  

3/2/ ACx +−= ζ  

Since Point B lies on line EB: 

3/ AC2 +  /x- =y B B ζ  

222

B

22

B

2

B / AC4 +/ xAC4-/ x=y ζζζ  



 

 

61 

Where, via Pythagorean Theorem: 

22

B x1=AB By+=  

)AC4 +xAC4x)(1/ ( x
2

B

2

B

22

B −+= ζ  

Or, 

2

B

2

B

2

B

22 AC4 +xAC4xx −+= ζζ  

2

B

2

B

2 AC4 +xAC4)x(1 3 −+= ζ  

)AC +xAC(x4 
2

B

2

B −=  

2

B

2

B AC +xAC x4/3 −=  

 

Via substitution of one side of the equilateral triangle 

ACD for another, this results in the following primary 

relationship: 

Equation 27.  Complex Quadratic  Relationship. 
2

B

2

B AD +xAD x4/3 −=  

Where, the above represents a Complex Quadratic Equation in 

the two unknowns, XB and AD . 

 

An associated transform is derived easily by realizing 

that: 

 )(2 cos x  B θ=  

 1- cos 2 2 θ=  

1AD 2 
2

−=  

Whereby, Equation 27 may be reformatted as follows: 

2

B

2

B AD +xAD x4/3 −=  
2222

AD +)1AD (2AD)1AD (2 −−−=  
2324

AD +ADAD 2)1AD 4AD 4( +−+−=  

1ADAD 3AD 2AD 4
234

++−−=  

The resulting Associated Quartic Equation is as follows: 

Equation 28.  Associated Quartic Relationship. 

04/1ADAD 3AD 2AD 4
234

=++−−  
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8.3.  Identities when Each Equation Coefficient Sums to Zero. 

Invoking Equation 1 [Ref. Table 12]: 

4/cos4/3cos3 τθθ +=  

Hence, by substitution of AD  for θcos  : 

4/)AD)(4/3(AD 
3

τ+=  

From Equation 28, 

04/1ADAD 3AD 2AD 4
234

=++−−  

04/1ADAD 3AD) 2AD (4
23

=++−−  

Via further substitution, since 2/160cos)3cos( === oθτ : 

04/1ADAD 3)
4

AD3
)( 2AD (4

2

=++−
+

−
τ

 

04/1ADAD 3]4/1AD)2/32/1(AD [3
22

=++−−−+  

0)4/14/1(AD)11(AD 3)-(3
2

=−+−+  

This results in a numerical identity such that each of the 

coefficients of the equation sum to zero.  As such, it 

provides no quantitative indication as to the actual length 

of side AD . 

8.4.  Identities when the Summation of Respective Equation Terms Equate. 

Lines AC  and EB  intersect at point C.  Therefore, their 

respective equations, derived above, may be combined as 

follows: 

3/ AC2 +  /-x =y C C C ζζ =x  

 
3

AD2
 +  

2

AD
-

2

AD
 

ζ
ζ =  

 
3

AD2
 +  

32

AD
-

2

AD
3 =  

Which, by dividing thru by AD , and rearranging gives: 

   
32

1
-

3

2
 

2

3
 =  

Multiplying thru by 2 3  finally yields  

   1-(2)2 3 =  

   3=  

This results in a numerical identity without mentioning 

length AD  which drops out (i.e.; has been canceled out) 
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8.5.  Mathematical Closure. 

Equation 27 relates AD  to a second unknown quantity xB.  As 

depicted, it qualifies as a Complex Quadratic Equation, 

thereby affording unique sets or families of solutions. 

 

The format of this Complex Quadratic Equation is such that 

when standing alone (i.e.; without permitting it to become 

associated with any secondary, independent equation having 

the potential to mathematically support it), possible 

values can be ascribed to either of its dual unknown 

quantities in order to determine various sets of solutions.   

 

The process of mathematical closure consists of ascribing 

all possible values to either of such dual unknown 

quantities in order to determine a complete set of 

respective solution pairs.   

In other words, respective values for xB can be readily 

determined, via Quadratic Formula, for various particular 

values of length AD  that repetitively, independently are 

applied.   

 

Such solutions do meet all conditions imposed upon them by 

Equation 27.  However, a full-blown mathematical closure is 

necessary to  guarantee that a particular value of length 
o

AD 20cos=  is applied, thereby enabling Equation 27 to 

actually pertain to Figure 10.   

 

This signifies that Complex Quadratic Equations, by their 

nature introduce an aspect of mathematical uncertainty.    

 

Such uncertainty is elucidated upon below by means of an 

analysis which examines only two values for AD, both of 

which invariably satisfy Equation 27.  However only the 

later value meets the additional Figure 10 imposed 

criterion that: 

o
AD 20cos=  

First, when AD  is set equal to ½, Equation 27 may be 

resolved as follows: 

2

B

2

B AD +xAD x4/3 −=  

 1/4+x)2/1( x4/3 B

2

B −=  

Then, 

02/1-x2/1x B

2

B =−  
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Or by applying the Quadratic Formula, 

aacbbxB 2/]4[ 2 −±−=  

)1(2/])2/1)(1(44/12/1[ −−±=  

)1(2/])24/12/1[ +±=  

2/])4/92/1[ ±=  

2/]2/32/1[ ±=  

= 1, - ½  

For AD = ½, it is verified by substitution that these above 

roots do satisfy Equation 27, as follows: 

2

B

2

B AD +xAD x4/3 −=  

 1/4+x)2/1( x B

2

B −=  
22 ) (1/2+)1()2/1(1 −=  

1/4+2/11 −=  

/43=  

And,  

 1/4+x)2/1( x4/3 B

2

B −=  
22 ) (1/2+)2/1(2/1)2/1( −−−=  

1/4+4/14/1 +=  

/43=  

Secondly, Equation 27 also may be independently resolved 

for the exact condition when 
o

AD 20coscos == θ  as follows: 

2

B

2

B AD +xAD x4/3 −=  

2

B

2

B 2)(0.9396926 2)x(0.9396926x4/3 +−=  

Then, 

0133022221.0)0.93969262(
2

=+− BB xx  

Or via Quadratic Formula, 

aacbbxB 2/]4[ 2 −±−=  

)1(2/])133022221.0)(1(4)93969262.0(93969262.0[ 2 −−±=  

)1(2/]532088884.0883022221.093969262.0[ −±=  

)1(2/]350933337.093969262.0[ ±=  

2/]592396267.093969262.0[ ±=  

173648176.0;766044443.0=  
oo 80cos;40cos=  

θθ 4cos;2cos=  
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For 
o

AD 20cos= , it is verified by substitution that these 

above roots do satisfy Equation 27, as follows: 

2

B

2

B AD +xAD x4/3 −=  

2

B

2

B )93969262.0(+x)93969262.0( x −=  

10.88302222+43)(0.7660444)93969262.0(43)(0.7660444 2 −=  

10.88302222+719846309.0586824088.0 −=  

/43=  

And,  

2

B

2

B )93969262.0(+x)93969262.0( x4/3 −=  
22 )93969262.0(+).176481760()93969262.0().176481760( −=  

883022221.0+163175911.0030153689.0 −=  

4/3=  

In conclusion, the two different values for AD  applied 

above both clearly satisfy Equation 27.  However, Equation 

27 doesn’t know which of these should be applied in order 

to satisfy the additional constraints imposed by Figure 10. 

 

Were this two solution analysis instead to become expanded 

to address all values that could possibly be assigned to 

length AD , then a mathematical closure, or full-blown 

resolution of Complex Quadratic Equation 27 naturally would 

result. 

 

Moreover, the application of mathematical closure is not 

recommended in all cases. For example, since Complex Cubic 

Equation 3 shown below exhibits one root set consisting of 

three roots for every distinct value of ζ  that exists, such 

analysis would continue indefinitely: 

)tan31(tan3tan 23 θζθ −−=  [Ref. Equation 3] 

Although Equation 3 cannot determine which particular 

value of ζ  its assessor is seeking – simply because an 

inexhaustible number of root sets are afforded which 

satisfy this equation, once a particular value becomes 

assigned to ζ , such as √3, only one root set applies, 

such that: 

Such that, 

ooooo
zzz 260tan;140tan;20tan)240tan();120tan(;tan;; 321 =++= θθθ  

)tan31(3tan3tan 23 θθ −−=  

[Ref. Equation 24] when θtan1 =z ; 

[Ref. Equation 3] when 360tan == oζ  
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SECTION 9.  NUMBER THEORY IMPLICATION. 

In order to advance Number Theory state-of-the-art, an 

attempt is made to explain the very existence for 

dissimilar equation formats, and the reason why diversity 

exists between them. 

 

To this end, a comparison is conducted between Quadratic 

and Cubic Equation formats which reveals that: 

a) Each exhibits a mathematical structure that actually is 
quite different in nature from the other;   

b) Each functions in a diverse manner; and 
c) Each exists for it own unique reason! 

9.1.  Rationally-based and Cubic Irrational Number Classifications. 

All real numbers can be categorized either as rationally-

based or cubic irrational, where: 

Rationally-based numbers consist of: 

a. All rational numbers; and 

b. Quadratic irrational numbers such as 1025/73517  which 

are comprised of the magnitudes of all lengths which 

can be geometrically constructed from a given length 

of unity other than those which are of rational value.  

When algebraically expressed, they must exhibit at 

least one square root radical sign.  However, 

quadratic irrational numbers cannot feature any 

radical sign which is a multiple of three, such as a 

cube root or even possibly an eighty-first root, 

because such values cannot be determined by means of 

applying successive Quadratic Formulas that are 

permitted to operate only upon either rational numbers 

and/or quadratic equation root values, as might become 

determined by such method; and 

Cubic irrational numbers consist of all other real numbers 

that cannot be classified as rationally-based. 

The rationally-based number classification should be viewed 

as a set of real numbers which includes all possible 

Euclidean determinations that can be geometrically 

constructed from a given, arbitrary length of unity. 

 

It collates a disparate assortment of lengths together 

whose magnitudes all are of rational and quadratic 

irrational values, like 1025/73517 5)62/32(4 ++ , whose 

individual terms consist specifically of:  
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1) Rational numbers – represented as the ratio between two 
lengths whose magnitudes are integer values and 

portrayed as follows: 

12

1
1

x

a
x =

∆
=  

The mathematic division represented above described by 

Δ/2a identifies a length, x1, that is determined via 
geometric construction performed in accordance with the 

Euclidean Mapping Process specified in Section 2.3, 

where: 

a) Lengths Δ and 2a, each representing integer values, 
are geometrically constructed via sole straightedge 

and compass using an arbitrary, assigned length of 

unity as a basis; and  

b) Rational length x1 is identified as the horizontal 
offset measured from the right side of the rectangle 

to the point where the diagonal line intersects the 

horizontal line which exhibits a height of unity 

(Ref. Figure 2). 

Hence, all rational numbers are Euclidean!   

 

In other words, each and every one can be geometrically 

constructed from an arbitrary length which is to be 

designated as one unit long via only a straightedge and 

compass; and 

2) Quadratic irrational numbers – represented as magnitudes 

of lengths other than those which are of rational value 

which can be geometrically constructed from a given 

length of unity.   

Although rational values can become transformed into 

quadratic irrational values via Pythagorean Theorem, it 

nevertheless remains possible to measure straight line 

lengths which exhibit such magnitudes, as well as to 

replicate them from a given, arbitrary length of unity.   

 

All that needs to be known in order to geometrically 

construct a square root that is indicative of a 

quadratic irrational number is that upon drawing a right 

triangle whose sides become algebraically expressed as a 

and b, the altitude extending to its hypotenuse, c, will 

divide such base into two segments denoted respectively 

as s and (c – s).  [For example, upon viewing Figure 1, t, 

amounting in length to straight line AB could be 

designated as side a,  straight line BC  could be 
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designated as side b, straight line AC could be 
designated as hypotenuse, c, and straight line section 

CE could be designated as segment s.]  Hence, due to 
three similar right triangles which thereby become 

described in such manner, two residing inside of such 

larger initially drawn right triangle, a trigonometric 

relationship of the form sin θ = b/c = s/b thereby could 
be established.  In that the proportion b/c therein 

identifies sides belonging to such larger right 

triangle, the proportion s/b would apply to 

corresponding sides belonging to the smaller right 

triangle whose hypotenuse is of length b.  By 

multiplying each side of such resulting equation by the 

factor bc, the equality b2 =cs becomes obtained.  Then 

by taking the square root of each side, it becomes 

apparent that b = .cs   As various rational values become 

substituted for c and s therein, the length of side b of 

such larger right triangle thereby would assume 

different square root magnitudes.  So, if it were 

intended to geometrically construct side b so that it 

amounts to 3  units in length, a right triangle could 

be drawn whose hypotenuse, c, amounts to 3 units in 

length such that the altitude which lies perpendicular 

to it would reside a distance away from either of its 

ends a total of one unit of measurement; thereby setting 

the value of s to be one unit long.  Accordingly, the 

value of length b would amount to 3=)1(3=cs units in 

overall length.  In such very same manner, a fourth root 

of 3, as amounting to the square root of 3  and 

algebraically expressed as ,3=3=)3(=3 2/12/12/14/1  

thereafter could be geometrically constructed, merely by 

means of drawing another right triangle which this time 

instead exhibits dimensions of c= 3 and s = 1, such 

that .3=)1(3=cs=b  

 

In conclusion: 

• Rationally-based numbers comprise the magnitudes of all 

lengths which can be geometrically constructed from a 

given length of unity.    

• Cubic irrational numbers comprise all other real 

numbers; specifically accounting for the magnitudes of 

all lengths which cannot be geometrically constructed 

from a given, arbitrary length of unity. 
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9.2.  The Cubic Equation Distinction. 
Table 13, Table 14, and Table 15 present various equations 

which express mathematical combinations of trigonometric, 

cubic irrational number roots on their right-hand sides 

that actually can be collated into rationally-based 

numerical results which appear on their respective left-

hand sides.  

 

This is easily demonstrated for the specific case when 3θ 
assumes the value of 60o, whereby respective left-hand terms 

equate to rationally-based values of 8/14/ −=−τ , 8/34/ =η , 

3=ζ , zero, zero, 3-33 =− ζ , 4/3- , -3/4 and -3. 

 

The tables depict product, summation, and summation of 

paired product breakdowns as follows: 

• A known, or given discrete rationally-based value 

equals the product of three distinct, but linked, 

trigonometric, cubic irrational number roots as 

follows: 

Table 13.  The Product of Three Roots Equals a Known Value. 

 xxx
4

321−=−
τ

 [Ref. Equation 5] 

 yyy
4

321−=
η

 [Ref. Equation 8] 

321 zzz −=ζ  [Ref. Equation 11] 

• A known, or given discrete rationally-based value 

equals the summation of three distinct, but linked, 

trigonometric, cubic irrational number roots as 

follows: 

Table 14.  The Summation of Three Roots Equals a Known Value. 

 xxx0 321 ++=  [Ref. Equation 6] 

 yyy0 321 ++=  [Ref. Equation 9] 

)(3 321 zzz ++−=− ζ  [Ref. Equation 12] 

• A known, or given discrete rationally-based value 

equals the summation of paired products of three 

distinct, but linked, trigonometric, cubic irrational 

number roots as follows: 

Table 15.  The Sum of Paired Products of Three Roots Equals a Known Value. 

  xx  xx+ xx
4

3
- 323121 +=  [Ref. Equation 7] 

 y y y y+ yy4/3- 323121 +=  [Ref. Equation 10] 

323121 zz  zz  zz3 ++=−  [Ref. Equation 13] 
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Rationally-based quantities listed on the left-hand sides 

of the above equations represent respective coefficients 

for the following three Cubic Equations.  

04/cos)4/3(cos3 =−− τθθ  [Ref. Equation 1] 
 

04/sin)4/3(sin 3 =+− ηθθ  [Ref. Equation 2] 
 

0tan3tan3tan 23 =+−− ζθθζθ  [Ref. Equation 3] 

Moreover, trigonometric, cubic irrational quantities 

afforded on the left-hand sides of these three equations 

constitute their respective root structures. 

Lastly, notice that these three Cubic Equations are 

comprised entirely, or solely of rationally-based 

coefficients.  

 

Equation 3 is validated below for the specific case when 3θ 
again assumes the value of 60o such that: 

 3 =ζ  

0tan3tan3tan 23 =+−− ζθθζθ  [Ref. Equation 3] 

03tan3tan33tan 23 =+−− θθθ  

From Section 2.3, 

• z1 = tan θ   = tan 20o  = 0.363970234 

• z2 = tan (θ + 120
o)  = tan 140o = -0.839099631 

• z3 = tan (θ + 240
o)  = tan 260o  = 5.67128812 

Where, 

0))(tan)(tan(tan 321 =−−− zzz θθθ  

0)(tan]tan)([tan 32121

2 =−−++− zzzzz θθθ  

0tan)(tan)(tan 321323121

2

321

3 =−+++++− zzzzzzzzzzzz θθθ  

Equating respective coefficient terms gives: 

)(33 321 zzz ++−=−  

3231213 zzzzzz ++=−  

3213 zzz−=  

Trigonometric, cubic irrational root set values then are 

substituted to confirm that, despite their various 

arrangements, they nevertheless mathematically comprise 

each of the given rational coefficients as follows: 

Where, 

3213 zzz ++=ζ  [Ref. Equation 12] 

5.6712881210.83909963-40.36397023 +=  
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33 =  

 zz  zz  zz3 323121 ++=−  [Ref. Equation 13] 

 zz ) z  (zz 32321 ++=  

28812)631)(5.671(-0.839099)5.6712881209963134)(-0.839(0.3639702 ++=  

28812)631)(5.671(-0.839099).832182188434)((0.3639702 +=  

758770483.4758770483.1 −=  

3 −=  

321 zzz =− ζ  [Ref. Equation 11] 

67128812)099631)(5.34)(-0.839(0.3639702=  

3 −=  

Another example is afforded below whereby coefficients of 

the following given Cubic Equation consist solely of 

rational numbers: 

0
4

1
34 23 =−+− uuu  

Such that 

0))()(( =−−− TSR uuuuuu  

0)()( 23 =−+++++− TSRTSTRSRTSR uuuuuuuuuuuuuuu  

Equating respective coefficient terms gives: 

)(4 TSR uuu ++−=−  

TSTRSR uuuuuu ++=3  

TSR uuu−=−
4

1
 

The respective trigonometric, cubic irrational root set 

values for this given Cubic Equation, as determined via 

later analysis (Ref. Section 13.3.4), are specified as 

follows: 

09510704.0864590763.0,040302198.3;; +++=TSR uuu   

Then, by substitution: 

)(4 TSR uuu ++−=−  

)09510704.0864590763.0040302198.3( ++−=  

4−=  

TSTRSR uuuuuu ++=3  

TSTSR uuuuu ++= )(  

)09510704.0)(864590763.0()09510704.0864590763.0(040302198.3 ++=  

082228668.0)959697803.0(040302198.3 +=  

3=  
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TSR uuu−=−
4

1
 

)09510704.0)(864590763.0)(040302198.3(−=  

)082228668.0)(040302198.3(−=  

25.0−=  

This unique capability to characterize trigonometric, cubic 

irrational roots in terms of sole rationally-based 

coefficients is reserved only for Cubic Equation formats.  

 

Furthermore, Quadratic Equation formats do not possess this 

ability, simply because they require at least one cubic 

irrational coefficient to be present in order to produce a 

trigonometric, cubic irrational root pair. 

 

This above assertion is validated by considering either the 

following algebraic Quadratic Equation or its associated 

function: 

0 c bx  ax  2 =++  

Or, 

y c bx  ax  2 =++  

0y) (c bx  ax  2 =−++  

0' c bx  ax  2 =++  

Dividing thru by the first term coefficient produces: 

0
a

' c
 x 

a

b
 x  2 =++  

Or, 

0'c' x 'bx  2 =++  

Now, the root pair 21 x;x  belonging to the derived equation 

above can be determined, or viewed in terms of the famous 

Quadratic Formula as follows:  

)''4''(
2

1
x;x 2

21 cbb −±−=  

For particular circumstances when both coefficients b’ and 

''c  are rationally-based, it is obvious that such 21 x;x  root 

pair also must remain rationally-based.   

 

Conversely, for the 21 x;x  root pair to be cubic irrational, 

it then would have to violate the redefined definition of 

cubic irrational numbers, as postulated in Section 9.1. 



 

 

73 

9.3.  Cubic Equation Uniqueness Theorem. 

Based upon the above premise that: 

• Cubic Equations possess an innate ability to 

characterize trigonometric, cubic irrational roots in 

terms of sole rationally-based coefficients   

• Linear or Quadratic Equation formats cannot in any 

manner duplicate this capability 

It could be argued that Cubic Equation formats pose a 

complete demarcation from their Linear and Quadratic 

Equation counterparts.  This is because they must exist as 

separate mathematical entities, independent or completely 

apart from Quadratic Equation formats, in order allow for a 

unique correlation between rationally-based coefficients 

and their associated cubic irrational root sets. 

 

Such contention prefers an extraordinary implication upon 

Number Theory by suggesting that equations well might 

assume unque formats in order to account for the very 

numerical representations included therein. 

 

This gives rise to a new Cubic Equation Uniqueness Theorem 

as described below.  It applies exclusively to equation 

formats of singular unknown quantity (Ref. Section 2.2):  

Only Cubic Equations allow solely rationally-based 

numerical coefficients to co-exist with root sets 

comprised of cubic irrational numbers. 

This theorem in no way disputes, or contradicts the fact 

that cubic irrational root pairs can, and do exist within 

Quadratic Equation formats. 

 

What is very interesting, predicated upon what was deduced 

above, is that the only way this can occur is when 

coefficients b’ and/or ''c  also are cubic irrational.   

 

As such, a corollary to the Cubic Equation Uniqueness 

Theorem appears below: 

Cubic irrational root pairs which appear in 

Parabolic Equations or their associated functions 

require supporting cubic irrational coefficients. 
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The above determinations do not address Complex Quadratic 

and Complex Cubic Equations/Functions.  Hence, all of the 

pitfalls normally experienced when dealing with identities 

resulting from associated reductions of such equations are 

thereby avoided! 

 

The third, fourth, and fifth rows of the logic diagram 

specified below apply to the above corollary: 

CASE x b'  2x  b'x c'' 
CUBIC IRRATIONAL 

PAIRING 

I 
Rationally-

based 

Rationally-

based 

Rationally-

based 

Rationally-

based 

Rationally-

based 
N/A* 

II 
Rationally-

based 
Cubic irrational 

Rationally-

based 
Cubic irrational Cubic irrational b' and c'' 

III Cubic irrational 
Rationally-

based 
Cubic irrational Cubic irrational Cubic irrational x and c'' 

IV Cubic irrational Cubic irrational Cubic irrational Cubic irrational Cubic irrational x, b', and c'' 

V Cubic irrational Cubic irrational Cubic irrational Cubic irrational 
Rationally-

based 
x,  and b' 

*Equation contains no cubic irrational numbers 

An example for each case is presented below: 

CASE x b' x2 b'x c'' 0'c' x 'bx  2 =++  

SUM 

I 5 4 +  5 -4  58 12 +  11 )58 (32- +  0 

II 2 0.939692621 4 1.879385242 -5.87938524 0 

III 0.939692621 5 4 +  0.883022222 5.859987061 -6.743009283 0 

IV 0.939692621 0.766044443 0.883022222 0.71984631 -1.60286853 0 

V 5.67128182 -5.142300877 32.16343748 -29.16343748 -3 0 
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SECTION 10.  THE UCTRE; AND INTRODUCTION OF EQUATION SUB-ELEMENTS. 

This section presents a novel missing link transform, 

hereinafter referred to as the Unified Cubic Trigonometric 

Reduction Equation (UCTRE). 

 

Being of the overall form 0  c bx  ax  2 =++ , root pairs easily can be 

determined by mathematical assessment conducted solely upon  

UCTRE inherent coefficients via the Quadratic Formula as 

follows: 

aacbb 2/]4[x 2 −±−=  

Of extreme practical importance, UCTRE coefficients also can be 

shown to house vital information which actually characterizes 

root set structures evident within higher order Cubic Equations 

which they are associated with. 

 

Such vital information manifests itself in the form of RST 

Terminology, otherwise hereinafter deemed Equation Sub-elements.   

 

RST Terminology consists of a set of factors which relate θtan  to 

respective Cubic Equations roots as follows: 

θtanRzR =  

θtanSzS =  

θtanTzT =  

Accordingly, the UCTRE functions as a conduit which thereby 

enables RST Terminology embedded within higher order Cubic 

Equations to be dispensed directly into it.  This occurs because 

the UCTRE, in itself, actually performs as a reduced Quadratic 

Equation. 

 

During such reduction, an internal linkage capability apparently 

is at work which relates Cubic Equation root set structures to 

information that is contained in resulting lower order UCTRE 

coefficients. 
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Derivation: 

Since the roots for Equation 3 are three trigonometric values 

which characterize angles spaced out 120o apart (Ref. Section 

2.4.3): 

• z1 = tan θ   = tan θ1 

• z2 = tan (θ + 120
o)  = tan θ2 = )tan31/()3(tan θθ +−  

• z3 = tan (θ + 240
o)  = tan θ3 = )tan31/()3(tan θθ −+  

Σ = 3θ +360o 
= 3θ 

It’s plausible to let: 

)tan(tantan αθθθ +=== RR Rz  

)tan(tantan βθθθ +=== SS Sz  

)tan(tantan γθθθ +=== TT Tz  

Where, 

θθθθ 3=++ TSR  

θγθβθαθ 3)  ()()( =+++++  

)]()[(3  βθαθθγθ +++−=+  

Then, 

)]}()[(3tan{)  ( tan tan zT βθαθθγθθ +++−=+== T   

)]()tan[(1

)]()tan[(

βθαθζ

βθαθζ

++++

+++−
=  

)tan()tan(1

)tan()tan(
1

)tan()tan(1

)tan()tan(

βθαθ

βθαθ
ζ

βθαθ

βθαθ
ζ

++−

+++
+

++−

+++
−

=  

θ

θθ
ζ

θ

θθ
ζ

2

2

tan1

tantan
1

tan1

tantan

RS

SR
RS

SR

−

+
+

−

+
−

=  

θζθ

θθζζ
θ

tan)(tan1

tan)(tan
tan

2

2

SRRS

SRRS
T

++−

+−−
=  

θθζζθζθθ tan)(tantan)(tantan 223 SRRSSRTRSTT +−−=++−  

Substituting )tan31(tan3 2 θζθ −−  for tan3 θ (Ref. Equation 3) gives: 

θθζζθζθζθθ tan)(tantan)(]tan31(tan3[tan 222 SRRSSRTRSTT +−−=++−−−  

0tan)(tan3tan3tan)( 22 =−+++−+−++ ζθζθζζθθ STRTRSRSTRSTRSTTSR  

Which simplifies to: 

Equation 29.  The Unified Cubic Trigonometric Reduction Equation. 

0tan]3)[(tan]3)[()1( 2 =−+++−+++− θζθζ RSTSTRTRSRSTTSRRST  
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Equation 29, re-written as follows, is of the following 

Quadratic form: 
ax2  +    bx   +   c  = 0 

0)1(tan]3)[(tan]3)[( 2 =−+−+++−++ RSTRSTTSRRSTSTRTRS ζθθζ  

Where,  

)3( RSTSTRTRSa −++= ζ  

RSTTSRb 3−++=  

)1( −= RSTc ζ  

θtan=x  

As such, Equation 29, exemplifies a Quadratic Equation whose 

coefficients are represented in terms of combinations of R, S, 

T, and ζ . 

Hence, the Quadratic Formula applies as follows:  

a

acbb

2

4
x

2 −±−
=  

)3(2

)1)]((3[4)]3)[()](3[
tan

22

RSTSTRTRS

RSTSTRTRSRSTRSTTSRTSRRST

−++

−++−+−++±++−
=

ζ

ζ
θ  

Therefore, the dual roots for Equation 29, namely x1 and x2, may 

be represented in terms of combinations of R, S, T, and ζ .   For 

any particular value of tan θ, many variations of Equation 29 
exist depending on the assignments of such coefficients. 

 

As indicated below, R, S, and T may be multiplied respectively 

by tan θ in order to determine three roots zR, zS, and zT for a 
Cubic Equation as follows. 

• θ tan R  zR =  

• θ tan S  zS =  

• θ tan T  zT =  

Moreover, Equation 29 coefficients express combinations of the 

respective products, summations, and summations of the paired 

products of Equation Sub-elements R, S, and T. 
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When substituting the roots for Equation 3 back into Equation 

29, it simply reverts back into Equation 3, thereby verifying 

the math used during the Equation 29 derivation, as follows: 

Verification (Reverse derivation):  

• θ tan R  zR =  

• θ tan S  zS =  

• θ tan T  zT =  

• θ tan / zR 1=  

• θ tan / zS 2=  

• θ tan / zT 3=  

But,  

θ

ζ

θ 33

321

tantan
−==

zzz
RST  

[Ref. Equation 11] 

θ

ζ

θ 33

321

tan

3

tan

3
3 −==

zzz
RST  

θ

ζ

θ tan

3

tan

321 =
++

=++
zzz

TSR  
[Ref. Equation 12] 

 

θθ 22

323121

tan

3

tan
−=

++
=++

zzzzzz
STRTRS  

[Ref. Equation 13] 

 

0tan]3)[(tan]3)[()1( 2 =−+++−+++− θζθζ RSTSTRTRSRSTTSRRST  [Ref. Equation 29] 

0tan]
tan

3
)

tan

3
[(tan]

tan

3
)

tan

3
[()1

tan
( 2

3233
=

−
−−+

−
−+−− θ

θ

ζ

θ
ζθ

θ

ζ

θ

ζ

θ

ζ
ζ  

0tan]
tan

3

tan

tan
)

tan

3
[(tan]

tan

3

tan

tan
)

tan

3
[()

tan

tan

tan
( 2

3232

2

3

3

3
=+−+++−− θ

θ

ζ

θ

θ

θ
ζθ

θ

ζ

θ

θ

θ

ζ

θ

θ

θ

ζ
ζ  

0tan][tan3tan]1[tan3)tan( 223 =−−+++− θζθζθθζθζζ  

0tan3tan3tan3tan3tan 223332 =+−++−− θζθζθζθζθζζ  

0tan3tan3tantan3tan3 333222 =−+−++− θζθζθζθζθζζ  

0tantan3tan3 3222 =−++− θζθζθζζ  

0tantan3tan3 32 =−++− θθζθζ  

θθζθ 32 tan]tan31[tan3 =−−  [Ref. Equation 3] 
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 SECTION 11.  ASSOCIATED TRANSFORMS. 

This section develops transforms which are considered to be 

associated with the conduct of the Unified Cubic Trigonometric 

Reduction Equation. 

11.1.  The Simplified Unified Cubic Trigonometric Reduction Equation. 

The Unified Cubic Trigonometric Reduction Equation may be 

simplified further by applying the following identities: 

RSTD

STRTRSC

TSRB

−=

++=

++−= )(

 

Then Equation 29 further reduces as follows, 

0tan]3)[(tan]3)[()1( 2 =−+++−+++− θζθζ RSTSTRTRSRSTTSRRST  [Ref. Equation 29] 

0tan)3(tan)3()1( 2 =++−−+− θζθζ DCDBD  

Or, 

Equation 30.  The Simplified Unified Cubic Trigonometric Reduction Equation. 

0)1(tan)3(tan)3( 2 =+−−−+ DDBDC ζθθζ  

Now, by applying the Quadratic Formula to Equation 30, a another 

simplified relationship for tan θ in terms of ζ , R, S, and T is 

realized as follows: 

a

acbb

2

4
x

2 −±−
=  

)3(2

)1)(3(4)]3([)3(
tan

22

DC

DDCDBDB

+

+++−−±−
=

ζ

ζ
θ  

11.2.  The Characteristic Cubic Equation. 

Whereas R, S and T represent three coefficients from the  

Unified Cubic Trigonometric Reduction Equation 29, they also may 

be permitted to depict roots to a corresponding Characteristic 

Cubic Equation, derived as follows: 

Where, 

0)()(

0)]()([

0))()((

23

2

=−+++++−

=−++−

=−−−

RSTqSTRTRSqTSRq

TqRSqSRq

TqSqRq

 

Now, because q can assume a value of any of the three roots R, 

S, or T above, the following equation results: 

Equation 31.  The Characteristic Cubic Equation. 

023 =+++ DCRBRAR  
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Furthermore, it may be easily noticed that as specific values 

for R, S, and T are interchanged with one another, the resulting 

values of B, C, and D, again notated below, are not impacted; 

i.e., they remain unaltered in value: 

 

Six interchangeable combinations exist as follows, or three 

factorial (3!): 

SPECIFIC “R” VALUE SPECIFIC “S” VALUE SPECIFIC “T” VALUE 

R1 S1 T1 

R1 T1 S1 

S1 R1 T1 

S1 T1 R1 

T1 R1 S1 

T1 S1 R1 

As R assumes any of the values R1, S1, or T1, then each of its 

respective S and T values can assume either of the combinations 

of the remaining values.  That is to say, as R assumes a value 

of T1 and S assumes a value of R1, then T assumes a value of S1; 

or as R assumes a value of T1 and S assumes a value of S1, T then 

assumes a value of R1. 

 

Accordingly,  

)( TSRB ++−=  

)( 111 TSR ++−=  

)()( 111111 TSRSTR ++−=++−=  

)()( 111111 TSRTRS ++−=++−=  

)()( 111111 TSRRTS ++−=++−=  

)()( 111111 TSRSRT ++−=++−=  

)()( 111111 TSRRST ++−=++−=  

Notice that the value for B above always remains exactly the 

same; i.e.; it is equal to the summation of R1 plus S1 plus T1, 

regardless of what order is applied. 

Likewise, the sum of the paired products is: 

STRTRSC ++=  

111111 TSTRSR ++=  

111111111111111111 TSTRSRTSSRTRSTSRTR ++=++=++=  

111111111111111111 TSTRSRTRTSSRTRTSRS ++=++=++=  

111111111111111111 TSTRSRTRSRTSRTRSTS ++=++=++=  

111111111111111111 TSTRSRSRTSTRSRSTRT ++=++=++=  

111111111111111111 TSTRSRSRTRTSRSRTST ++=++=++=  
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Again, the value of C remains unaltered regardless of which 

combination is applied. 

Lastly, 

RSTD −=  

111 TSR−=  

111111 TSRSTR −=−=  

111111 TSRTRS −=−=  

111111 TSRRTS −=−=  

111111 TSRSRT −=−=  

111111 TSRRST −=−=  

As indicated, the product of all possible combinations calculate 

to the same exact value of D, which is equal to  R1S1T1. 

 

The above analysis can be interpreted to mean that for any given 

Characteristic Cubic Equation (Ref. Equation 31), only one 

Quadratic Equation can result whose coefficients a, b, and c are 

as follows (Ref. Equation 30): 

)3( DCa += ζ  

)3( DBb −−=  

)1( +−= Dc ζ  

11.3.  The Generalized Cubic Equation. 

This section emphasizes that a unique Generalized Cubic Equation 

exists for each and every Characteristic Cubic Equation, derived 

as follows: 

[Ref. Equation 31]  023 =+++ DCRBRAR  

For A = 1, multiplying thru by tan3θ yields, 

0tantantantan 333233 =+++ θθθθ DCRBRR  

0tan)tan)(tan()tan)(tan()tan(
3223 =+++ θθθθθθ DRCRBR  

Designating θtanR  as z gives: 

0tan)tan()tan( 3223 =+++ θθθ DzCzBz  

Or,  

Equation 32.  The Generalized Cubic Equation. 

023 =+++ δγβα zzz  

Where, 
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θδ

θγ

θβ

α

3

2

tan

tan

tan

1

D

C

B

=

=

=

=

 

Moreover looking at the roots for Equation 32, 

0))()(( =−−− TSR zzzzzz  

0)]()([ 2 =−++− TSRSR zzzzzzzz  

0)()( 23 =−+++++− TSRTSTRSRTSR zzzzzzzzzzzzzzz  

But, 

023 =+++ δγβα zzz  [Ref. Equation 32] 

So, after comparing like coefficients: 

θβ tan)( Bzzz TSR =++−=  

θtan)( TSR ++−=  

)tantantan( θθθ TSR ++−=  

θγ 2tanCzzzzzz TSTRSR =++=  

θ2tan)( STRTRS ++=  

θθθθθθ tan)tan(tan)tan(tan)tan( TSTRSR ++=  

θδ 3tanDzzz TSR =−=  

θ3tan)(RST−=  

)tan)(tan)(tan( θθθ TSR−=  

Therefore, 

θ

θ

θ

 tan Tz

 tan Sz

 tan Rz

T

S

=

=

=R

 

11.4..  Expression for S and T. 

An expression for S and T is derived as follows: 

Where, 

RSTD

TSRB

−=

++−= )(
 

)( RBTS +−=+  

Also, 

TTSTS 2)( −+=−  
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Such that, 

222 4)(4)()( TTSTTSTS ++−+=−  

222 444)]([ TTSTRB +−−+−=  

STRB 4)]([ 2 −+−=  

)(4)]([ 2

RST

D
STRB

−
−+−=  

R

D
RB

4
)]([ 2 ++−=  

Secondly, 

T)] - S (T)  ½[(S  TS, ±+=  

])(T)  ½[(S  2
TS −±+=  

Equation 33.  Expression for S and T. 

]
4

)()(½[  TS, 2

R

D
RBRB ++±+−=  

Or, 

]
4

)()(½[ S 2

R

D
RBRB ++++−=  

]
4

)()(½[  T 2

R

D
RBRB ++−+−=  

11.5.  Expression for R and (S + T). 

An expression for R and (S + T) is derived as follows: 

Where, 

RSTD

STRTRSC

TSRB

−=

++=

++−= )(

 

)( RBTS +−=+  

)( RBRRTRS +−=+  

)( TSRRRB ++−=  

)(44 2 RTRSRRB ++−=  

)(4 2 STCR −+−=  

)(4 2

R

D
CR ++−=  
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R)  (B- R,  T)  (S R, +=+  

R)  ½(-2)(B ½(2R), +=  

R)]  2(B- ½[2R, +=  

2R)]  (B ½[-B +±=  

])2([½ 2
RBB +±−=  

]44[½ 22 RRBBB ++±−=  

]4)(4[½ 222
R

R

D
CRBB +++−±−=  

Or, 

Equation 34.  Expression for R and S + T. 

])(4[½T)  (S R, 2

R

D
CBB +−±−=+  

Or,  

])(4[½R, 2

R

D
CBB +−+−=  

])(4[½T  S 2

R

D
CBB +−−−=+  

11.6.  Cubic Restitution Equation. 

Now, it becomes possible to establish a relationship 

between tan θ in terms of ζ and the coefficients from the 
Characteristic Cubic Equation 31 as follows: 

 Where TSR        3 θθθθ ++= , 

   tan  tan R  z RR === θθ )]     (  -[3tan TS θθθ +  

   tan  tan S  z SS === θθ ]
4

)()([
2

tan 2

R

D
RBRB ++++−

θ
 

   tan  tan T  z TT === θθ ]
4

)()([
2

tan 2

R

D
RBRB ++−+−

θ
 

Such that, 

}
4

)()]({[
4

tan
tantan 22

2

R

D
RBRBTS −+−+−=

θ
θθ  

]
4

)()][(
4

tan 22
2

R

D
RBRB −+−+=

θ
 

R

D θ2tan
−=  
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θθθ tan)(tantan RBTS +−=+  

)](3tan[tantan TSR R θθθθθ +−==  

θζθ

θθζζ

θζ
θ

θ
θ

ζζ

θθζθθ

θθθθζζ

θθ

θθ
ζ

θθ

θθ
ζ

θθθ

θθθ

tan)(tan

tan)(tan

tan)()
tan

(1

tan)()
tan

(

)tan(tantantan1

)tan(tantantan

)
tantan1

tantan
(1

)
tantan1

tantan
(

)tan()3tan(1

)tan()3tan(

2

2

2

2

RBRDR

RBRDR

RB
R

D

RB
R

D

TSTS

TSTS

TS

TS

TS

TS

TS

TS

+−+

+++
=

+−+

+++
=

++−

+−−
=

−

+
+

−

+
−

=

++

+−
=

 

Cross multiplying yields, 

θθζζθζθθ tan)(tantan)(tantan 22232 RBRDRRBRDRR +++=+−+  

0tan)(tantantantantan 2232232 =+−−−−−+ θθζζθζθζθθ RBRDRRBRDRR  

Now, from the Characteristic Cubic Equation a relationship for 

AR3 is determined as follows: 

023 =+++ DCRBRAR  [Ref. Equation 31] 

)( 23 DCRBRAR ++−=  

Placing this result back into the expression notated above for A 

= 1 establishes the Cubic Restitution Equation as follows: 

0tan)(tantan][tantantan 2222232 =+−−−+++−+ θθζζθζθζθθ RBRDRDCRBRBRDRR  

0tan)(tantan)(tantan 222232 =+−−−+++−++ θθζζθζθθ RBRDRDCRBRBRDRR  

0tan)(tantan)(tantan 2232 =+−−−+++ θθζζθζθθ RBRDRDCRDRR  

0tantantan 23 =−−+ θζθζθ RBRCRDR  

Collecting like terms gives the following final Quadratic 

Equation for R: 

0)tantantan( 23 =−−+ θζθζθ BCDR  

Or, 

Equation 35.  The Cubic Restitution Equation. 

0tantantan 23 =−−+ ζθθζθ BCD  
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Then for, 

0)tan()tan(tan 23 =−−+ ζθθζθ BCD  

Substituting in respective coefficients from the Generalized 

Cubic Equation 32 given below determines the following equation: 

θδ

θγ

θβ

3

2

tan

tan

tan

D

C

B

=

=

=

 

0=−−+ ζβζγδ  

Or, 

Equation 36.  ζ Relationship to Generalized Cubic Equation Coefficients. 

γ

βδ
ζ

−

−
=

1
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SECTION 12.  CHARACTERISTIC CUBIC EQUATION THRUWAY SYSTEM. 

Characteristic Cubic Equation 31 is a very compact 

expression whose coefficients are inextricably linked to 

associated transforms outlined in the prior section of this 

treatise. 

 

In a sense Equation 31 may be likened, or viewed as a 

crossroads which interconnects a plethora of other 

associated transforms by means of a so-called Thruway 

System. 

 

The latter portions of this section elucidate upon these 

associations, disclosing all of the intricate details which 

serve to bond, or cement the thruway.  Each circumstance 

represents its own particular byway which sometimes 

delineates other supporting equations, and other times 

expresses known relationships portrayed earlier. 

 

Table 16 represents a map, or chart that defines the entire 

thruway system.  Byways appear as either given 

Characteristic Cubic Equation 31 coefficients, or 

calculated values based upon them in combination with the 

tan θ. 

 

Users are free to travel the thruway system and move from 

one equation, or transform, to another.  However, in order 

to move from one point to another, as itemized on the map, 

special rules apply which appear in Table 17.  Of interest, 

the rules may be different when attempting to return from a 

certain destination point back to an original embarkation 

point. 

 

The Table 16 map affords the logic which has been applied 

to the rules of Table 17.  Since the only route from any of  

points 2, 3, or 4 to either point 5 or point 6 goes thru 

point 1, any attempt to transform from Equation 30, 

Equation 33, or Equation 34 Quadratic based representations 

to either Equation 32, or Equation 35 Cubic based 

transformations must go through Equation 31.  Equation 36 

does not merit a destination point of its own since it is 

just a reformatting of point 6. 

 

Examples for Table 17 rules are given below for travel 

between points 1 and 2. 
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Table 16.  Characteristic Cubic Equation Thruway System. 
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Table 17.  Thruway Travel Rules. 

Emb. 

Point 

Dest. 

Point 

Knowns 

or  

Givens 

Unknowns Rules 

2 1 a, b, c x, ζ, B, C, D  1) Calculate x = tan θ via Quadratic Formula; 

2) Determine θ; 

3) Determine 3θ; 

4) Calculate ζ = tan (3θ); 

5) Calculate D from c =- ζ(D+1); 

6) Calculate B from b = (3D-B); 

7) Calculate C from a = ζ(C+3D); 

8) Write Equation 31 for A = 1 

1 2 B, C, D x, ζ, a, b, c, R 1) Determine x
2
 using Equation 37; 

2) Calculate x = tan θ; 

3) Determine θ; 

4) Determine 3θ; 

5) Calculate ζ = tan (3θ); 

6) Calculate a = ζ(C+3D); 

7) Calculate b = (3D-B)tan θ; 

8) Calculate c =- ζ(D+1); 

9) Write Equation 30 

1 3 or 4 B, C, D R, S, T Requires Cubic Resolution – see next Section 

3 or 4 1 R, S, T B, C, D 1) Calculate B =-(R+S+T); 

2) Calculate C = RS+RT+ST; 

3) Calculate D = -RST; 

4) Write Equation 31 for A = 1 

1 5  B, C, D α, β, γ, δ, tan θ, 

R, z 

1) Determine x
2
 using Equation 37; 

2) Calculate x = tan θ; 

3) α = 1 

4) Calculate β = B tan θ; 

5) Calculate γ = C tan
2 

θ; 

6) Calculate δ = D tan
3 

θ 

7) Write Equation 32 

1 6  B, C, D α, β, γ, δ, tan θ, 

ζ, R, z 

1) Determine x
2
 using Equation 37; 

2) Calculate x = tan θ; 

3) Determine θ; 

4) Determine 3θ; 

5) Calculate ζ = tan (3θ); 

6) α = 1 

7) Calculate β = B tan θ; 

8) Calculate γ =- C tan
2 

θ; 

9) Calculate δ = D tan
3 

θ 

10) Write Equation 35 

5 1 α = 1, β, B, C, D, ζ, tan θ, 1) Calculate ζ = tan (3θ) using Equation 36; 
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Emb. 

Point 

Dest. 

Point 

Knowns 

or  

Givens 

Unknowns Rules 

γ, δ R, z 2) Determine 3θ; 

3) Determine θ = 1/3 (3θ); 

4) Calculate tan θ 

7) Calculate B from β = B tan θ; 

8) Calculate C from γ =- C tan
2 

θ; 

9) Calculate D from δ = D tan
3 

θ 

10) Write Equation 31 for A = 1 

6 1 α = 1, β, 

ζ (γ), δ, ζ 

B, C, D, tan θ, R, 

z 

1) From  ζ = tan (3θ), determine 3θ; 

2) Determine θ = 1/3 (3θ); 

3) Calculate tan θ 

4) Calculate B from β = B tan θ; 

5) Determine γ = ζ (γ)/ ζ 

6) Calculate C from γ =- C tan
2 

θ; 

7) Calculate D from δ = D tan
3 

θ 

8) Write Equation 31 for A = 1 

When traveling from Point 2 to Point 1, the Characteristic 

Cubic Equation [Ref. Equation 31] coefficients B, C and D 

can be determined from the coefficients a, b and c 

appearing in any given Quadratic Equation. 

 

This may be achieved by applying the Quadratic Formula to 

the given coefficients a, b, and c in order to determine 

the first root of such given Quadratic Equation as follows: 

a

acbb

2

4
tanx

2

1

−+−
== θ  

From this root, ζ  = tan (3θ) is easily established by first 
determining θ, then multiplying it by three, and lastly 
calculating its tangent. 

 

Whereas Equation 30 gives the following identities: 

]3[ DCa += ζ  

BDb −= 3  

)1( +−= Dc ζ  

The unknowns B, C, and D may be determined as follows, 

where D needs to be determined before B, and C: 

bDB −= 3  

D
a

C 3−=
ζ

 

ζ

ζ+
−=

c
D  
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With Characteristic Cubic Equation coefficients fully 

determined, an actual writing of the complete transform 

023 =+++ DCRBRAR  now becomes possible for A = 1. 

 

This approach is demonstrated via example.  With respect to 

the following given Quadratic Equation: 

0  c bx  ax  2 =++  

0  35.625 -16.2x   14x 2 =+  

a

acbb

2

4
x,x

2

21

−±−
=  

)14(2

)625.35)(14(4)2.16(2.16 2 −−±−
=  

28

199544.2622.16 +±−
=  

28

44.22572.16 ±−
=  

28

51252466.472.16 ±−
=  

275447309.2;118304452.1 −=  

At, 

118304452.1tan1 == θx  

o19657147.48=θ  
o5897144.1443 =θ  

710933225.0)3tan( −== θζ  

 

023 =+++ DCRBRAR  [Ref. Equation 31] 

1=A  

ζ

ζ+
−=

c
D 11019143.51

710933225.0

710933225.0625.35
−=

−

+
=  

bDB −= 3 2.163 −= D 2.16)11019143.51(3 −−= 5305743.169−=  

D
a

C 3−=
ζ

)11019143.51(3
710933225.0

14
+

−
= 6381482.133=  

Then, the associated Characteristic Cubic Reduction 

Equation is: 

023 =+++ DCRBRAR  

011019143.516381482.1335305743.169 23 =−+− RRR  
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Conversely, when traveling from Point 1 to Point 2, 

determining the Quadratic Equation which is associated with 

any given Characteristic Cubic Equation 31 is considerably 

more difficult. 

 

However, this too may be accomplished via proper 

interpretation of Equation 31 coefficients B, C, and D in 

order to determine tan θ, and subsequent substitution of 
these results, along with a calculated value for ζ  into the 

following three equations: 

]3[ DCa += ζ  

DBb 3+−=  

)1( −−= Dc ζ  

Where, 

02 =++ cbxax  

0)1()3(]3[ 2 =+−−++ DxBDxDC ζζ  

Then, 

xDBDxDC )3()]1()3[( 2 −=+−+ζ  

)1()3(

)3(
2 +−+

−
=

DxDC

xDB
ζ  

θ

θθ
2

2

tan31

)tan3(tan

−

−
=  

2

2

31

)3(

x

xx

−

−
=  

2

2

2 31

)3(

)1()3(

)3(

x

x

DxDC

DB

−

−
=

+−+

−
 

 

Cross-multiplying yields: 

)31)(3()3)](1()3[( 222 xDBxDxDC −−=−+−+  

Letting x2 = v gives: 

)31)(3()3)](1()3[( vDBvDvDC −−=−+−+  

Or, 

0)31)(3()3)](1()3[( =−−+−+−+ vBDvDvDC  

Then, 

0)3(33)1()3()1(3)3(3 2 =−−−++++−+−+ vBDBDvDvDCDvDC  

0)3()]39()1()93[()3( 2 =+−−−+++++− BvBDDDCvDC  

0)3()]39()1()93[()3( 2 =++−−+++−+ BvBDDDCvDC  

0)3()]1()(3[)3( 2 =+++++−+ BvDCBvDC  



 

 

93 

Where, 

a

acbb

2

4
v

2 −±−
=  

)3(2

)3)(3(4)]1()(3[)]1()(3[ 2

DC

BDCDCBDCB

+

++−+++±+++
=  

)3(2

]1236412[)1()1)((6)2(9)]1()(3[ 222

DC

BDDBCCDDCBCBCBDCB

+

+++−+++++++±+++
=  

)3(2

]1236412[)12(6666)9189)]1()(3[ 222

DC

BDDBCCDDCBCDBDCBCBDCB

+

+++−+++++++++±+++
=  

Equation 37.  Determination of tan2θ from Equation 31 Coefficients. 

DC

DCBCDBDBCDCBDCB

62

346616614)(9)]1()(3[
tan

222

2

+

−−+++−+++±+++
=θ  

Applying Equation 37 with respect to the Characteristic Cubic Equation determined in the 

above example gives: 

023 =+++ DCRBRAR  

011019143.516381482.1335305743.169 23 =−+− RRR  

Then, 

1=A  

5305743.169−=B  

6381482.133=C  

11019143.51−=D  

DC

DCBCDBDBCDCBDCB

62

346616614)(9)]1()(3[
tan

222

2

+

−−+++−+++±+++
=θ  [Ref. Equation 37] 

38485218.39

746509.17378288892.801183446.1017162802.4098144063.51988528.317180251668.26129325.4193977874697.157

−

+−−+−+−−+±−
=  
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38485218.39

3215.779,117874697.157

−

±−
=  

38485218.39

5325827.1087874697.157

−

±−
=  

250604848.1=  

Then, 

250604848.1tan == θx  

118304452.1=  

o55174607.53=θ  
o6552382.1603 =θ  

710933225.0)3tan( −== ζθ  

Or, 

]3[ DCa += ζ )]11019143.51(363814826.133[710933225.0 −+−= 14=  

DBb 3+−= )11019143.51(3)530574.169( −+−−= 2.16=  

)1( −−= Dc ζ )111019143.51(710933225.0 −−= 625.35−=  

Hence, 

0  c bx  ax  2 =++  

0  35.625 -16.2x   14x 2 =+  Q.E.D. 

When Characteristic Cubic Equation 31 coefficients combine to form a negative summation 

for the terms contained under the radical expressed in Equation 37, as indicated below, 

only imaginary values for the tan θ can result. 

DCBCDBDBCDCB 346616614)(9 222 −−+++−+++  < 0 

This applies when large values of D appear in proportion to B and C.  Once D becomes 

greater than 34, the D2 term tends to dominate, thereby making the summation of the 

expression turn positive. 
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SECTION 13.  CUBIC RESOLUTION. 

A Cubic Equation may be resolved easily once its 

coefficient structure becomes interpreted. 

 

This consists of determining which of the following five 

categories it fits into; thereby resolving it by the 

approach specified: 

CATEGORY 1: When R, S, or T Sub-element equals unity. 

[Resolution Approach -- Section 13.1]; 

CATEGORY 2: When αγβ 32 =  

[Resolution Approach -- Section 13.2]; 
CATEGORY 3: When R, S, or T Sub-element is not equal to 

unity 

[Resolution Approach -- Section 13.3]; and 

CATEGORY 4: When 1== γα , a2−=β , 4/2β== bz , and c=δ  

satisfies the relationship 023 =+++ δγβ bbb  

[Resolution Approach -- Section 13.4]. 

CATEGORY 5: When either 0== γβ  or Rzβγ −=  

[Resolution Approach -- Section 13.5]. 

13.1.  Cubic Resolution when R, S, or T Sub-element Equals Unity. 

Generalized Cubic Equations comprised of an R, S, or T term 

which equals unity are easily distinguished because the 

sums of the coefficients of their associated Characteristic 

Cubic Equations always equal zero.  This is demonstrated as 

follows, where: 

023 =+++ DCRBRAR  [Ref. Equation 31] 

023 =+++ DCSBSAS  

023 =+++ DCTBTAT  

0)1()1()1( 23 =+++ DCBA  

0=+++ DCBA  

Now setting A, and R in this case, equal to unity enables a 

simple determination of remaining and S and T terms as 

follows: 

Where,  

)( TSRB ++−=  

)1( TS ++−=  

RSTD −=  
ST)1(−=  

ST−=  
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Since B and D are identified in the given Characteristic 

Cubic Equation: 

)1( +−=+ BTS  

)1( +−=+− BT
T

D
 

TBTD )1(2 +−=+−  

DTBT =++ )1(2  

222 )
2

1
()

4

4
()

2

1
()1(

+
+=

+
+++

B
D

B
TBT  

22 )
2

1
()

4

4
()

2

1
(

+
+=

+
+

B
D

B
T  

2)1(4
2

1

2

1
++=

+
+ BD

B
T  

])1(4)1([
2

1 2++±+−= BDBT  

)1( TBS ++−=  

])1(4)1([
2

1
)1( 2++±+−−+−= BDBB  

])1(4)1([
2

1
)1)(2(

2

1 2++±+−−+−= BDBB  

])1(41[
2

1 2++±+−= BDB  

The related Generalized Cubic Equation is established by 

equating Equation 3 to Equation 36 as follows: 

θθθθ 32 tantan3)tan31)(3tan( −=−  

θ

θθ
θ

2

3

tan31

tantan3
)3tan(

−

−
=  

θ

θθ
θ

2

3

tan1

tantan
)3tan(

C

BD

−

−
=  

Hence, 

θ

θθ

θ

θθ
2

2

2

2

tan1

)tan(tan

tan31

)tan3(tan

C

BD

−

−
=

−

−
 

θ

θ

θ

θ
2

2

2

2

tan1

tan

tan31

tan3

C

BD

−

−
=

−

−
 

)tan31)(3tan(tan3tan 23 θθθθ −−=  [Ref. Equation 3] 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 
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By cross-multiplying, the following relationship between 

tan θ and the coefficients of any given Characteristic 
Cubic Equation are determined: 

)tan)(tan31()tan1)(tan3( 2222 BDC −−=−− θθθθ  

θθθθθθ 242422 tan3tan3tantantan3tan3 BDBDCC +−−=+−−  

θθθθ 4242 tan3tan)3(tantan)31(3 DDBBCC −++−=++−  

0)3(tan)331(tan)3( 24 =+++++−+ BDCBDC θθ  

0
3

3
tan)

3

331
(tan 24 =

+

+
+

+

+++
−

DC

B

DC

DCB
θθ  

0tantan 24 =++
a

c

a

b
θθ  

By twice applying the Quadratic Formula, the final 

relationship is obtained as follows: 

])1(4)([
2

1
tan 22

a

c

a

b

a

b
−±−=θ  

])
3

3
(4)

3

331
()

3

331
[(

2

1 2

DC

B

DC

DCB

DC

DCB

+

+
−

+

+++
±

+

+++
=  

)
3

3
(4)

3

331
()

3

331
(

2

2
tan 2

DC

B

DC

DCB

DC

DCB

+

+
−

+

+++
±

+

+++
=θ  

Now, the related Generalized Cubic Equation may be 

developed by applying the following formula: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

0tan)tan()tan( 3223 =+++ θθθ DzCzBz  

A simple verification for the Equation 3 Cubic is shown for 

the case when ζ equals 3 : 

Letting ‘z’ represent the tan θ, and ‘ζ’ stand for the 
tan(3θ) gives: 

)31(3 23 zzz −−= ζ  

033 23 =+−+− ζζ zzz  

0tan)tan()tan( 3223 =+++ θθθ DzCzBz  

27631145.14
363970234.0

33

20tan

33

tan

3
−=

−
=

−
=

−
=

o
B

θ

ζ
 

64589651.22
)363970234.0(

3

20tan

3

tan

3
222

−=
−

=
−

=
−

=
o

C
θ

 

92220796.35
)363970234.0(

3

20tan

3

tan 333
====

o
D

θ

ζ
 

)tan31)(3tan(tan3tan 23 θθθθ −−=  [Ref. Equation 3] 
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Where, 

])
3

3
(4)

3

331
()

3

331
[(

2

1
tan 22

DC

B

DC

DCB

DC

DCB

+

+
−

+

+++
±

+

+++
=θ  

])
3

3
(4)

3

331
()

12072737.85

84441592.73
[(

2

1 2

DC

B

DC

DCB

+

+
−

+

+++
±

−
=

])
12072737.85

27631145.11
(4)867525668.0(867525668.0[

2

1 2 +±−=  

]132474331.1867525668.0[
2

1
±−=  

1;132474331.0 −=  

132474331.0tan =θ  

363970234.0=  
o20tan=      Q.E.D. 

13.2.  Cubic Resolution when β2 = 3αγ.  

Cubic resolution via coefficient manipulation is possible 

under the condition when αγβ 32 =  as follows: 

Where the cubic binomial expansion states: 

32233 )(3)(3)()( BBABAABA +++=+  

Then, it follows that: 

3222333 92727)3( ββαβααβα +++=+ zzzz  

For the given condition when αγβ 32 = , 

3222333 272727)3( βγαβααβα +++=+ zzzz  

 

Now, with respect to the Generalized Cubic Equation 32: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

Multiplying thru by 
227α  yields, 

027272727 222233 =+++ δαγαβαα zzz  

Or, 

δαγαβαα 222233 27272727 −=++ zzz  

Substituting this expression into the above equation gives, 

δαββα 233 27)3( −=+z  

3 23 273 δαββα −=+z  

Or, 
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α

δαββ

3

273 23 −+−
=z  

As an example, consider the following specific Generalized 

Cubic Equation (Ref. Equation 32), fully designated except 

for its second term: 

023 =+++ δγβα zzz  

01664 23 =+++ zzz β  

For, 

αγβ 32 =  

)6)(4(3=  

72=  

72±=β  

Then, the following specific Generalized Cubic Equation 

(Ref. Equation 32) meets the criterion that αγβ 32 = : 

0166724 23 =++± zzz  

Where, 

α

δαββ

3

273 23 −+−
=z  

)4(3

)16()4(277272 3 2
3

−±+
=
m

 

12

940259.752272
;

12

059741.630172 33 −++−+−
=  

12

59427524.19485281374.8
;

12

47018303.18485281374.8 −+−−
=  

925749489.0;2462887.2 −−=  

0166724 23 =+++ zzz  

016)2462887.2(6)2462887.2(72)2462887.2(4 23 =+−+−+−  

0164777622.1381514243.4233741023.45 =+−+−  

01616 =+−  

00 =  

0166724 23 =++− zzz  

016)925749489.0(6)925749489.0(72)925749489.0(4 23 =+−+−−−  
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016554496934.5271988949.7173514115.3 =+−−−  

01616 =+−  

00 =  

Moreover, for conditions when 1=α   

αγβ 32 =  

γβ )1(32 =  

γ
β

=
3

2

 

Substituting into Equation 32 renders: 

0
3

2
23 =+++ δ

β
β zzz  

This analysis demonstrates that the cubic variable ‘z’ for 

the particular Generalized Cubic Equation stipulated above 

may be determined by a very simple manipulation of its 

coefficients. 

As an example of this, consider the following given 

Generalized Cubic Equation: 

02.21132363 23 =+++ zzz  

Where, 

3

)3)(21(63
=

3

)63(63
=

3
=

2β
γ  

)21(63=  

1323=  

1=α  

Then, 

3

273 3

1

δββ −+−
=z  

3

)2.21(276363 3 3 −+−
=  

3

6.24947463 3+−
=  

3

95189071.6263 +−
=  

01603643.0−=  

023 =+++ δγβα zzz  [Ref. Equation 32] 
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For the particular case when 3=β , the specific Generalized 

Cubic Equation cited above further simplifies into the 

following form: 

0
3

2
23 =+++ δ

β
β zzz  

0
3

3
3

2
23 =+++ δzzz  

033 23 =+++ δzzz  

This equation may be deemed the Fundamental Symmetric Cubic 

Equation since it constitutes 0)1( 3 =+z  when δ equals unity. 

 

Below, Equation 36 is incorporated into this result as 

follows: 

At, 

3

2β
γ =  

3
1

2β

βδ
ζ

−

−
=  

23

)(3

β

βδ

−

−
=  

Cross multiplying yields: 

)(3)3( 2 βδβζ −=−  

δ
ββζ

=
+−

3

3)3( 2

 

Then, 

0
3

2
23 =+++ δ

β
β zzz  

0
3

3)3(

3

22
23 =

+−
+++

ββζβ
β zzz  

For 3=β  

0)23(33 23 =−+++ ζzzz  

 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 
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Then, 

0)22(133 23 =−++++ ζzzz  

0)1(2)1( 3 =−++ ζz  

)1(2)1( 3 −=+ ζz  

3 )1(21 −=+ ζz  

For the particular case when ζ = √3: 

3 464101615.11 =+z  

135508545.11 =+z  

135508545.0=z  

 

Check: 

0)23(33 23 =−+++ ζzzz  

0)23()135508545.0(3)135508545.0(3)135508545.0( 23 =−+++ ζ  

0)323(406525632.0055087696.0002488284.0 =−+++  

032464101613.3 =−  

03732050807.1 =−  

00 =  

This solution is corroborated again using the above formula 

as follows: 

3

273 3

1

δββ −+−
=z  

3

)23(2733 3 3 ζ−−+−
=  

3

)23(27273 3 ζ−−+−
=  

3

)23(133 3 ζ−−+−
=  

3 )23(111 ζ−−+−=  

3 )1(21 ζ−−+−=  

3 464101615.11+−=  

135508545.11+−=  

135508545.0=  

 



 

 

103 

13.3.  The Cubic Resolution Transform. 

The new Cubic Resolution Transform (CRT) solves all given 

Cubic Equations directly, regardless of what format they 

may assume. 

 

Hence, such equations do not require that they first 

undergo a transformation process in order to remove any 

second order terms which they might contain. 

13.3.1.  Derivation. 

The derivation of CRT is based upon the geometry afforded 

in Figure 11. 

Figure 11.  The Cubic Resolution Transform Geometry. 
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Derivation 

ACTION PROOF 

1. In figure 11, draw circle with center at 

“O” and radius OA . 

1. Construction 

2. Extend radius OA  to Point B residing on 

circumference of circle. 

2. Construction 

3. Draw chord  AC at any selected angle ω, 

where point C lies on the circumference 

of the circle. 

3. Construction 

4. Select the abscissa (x-axis) parallel to 

chord  

4. Construction 

5. Draw radius OC  5. Construction 

6. Then ω=∠=∠ OACOCA  6. The angles 

residing opposite 

equal sides of a 

triangle are equal 

7. Draw chord CD  to make an angle of 

“2ω” with radius OC where point D 

resides on the circumference of circle. 

7. Construction 

8. Draw radius OD  8. Construction 

9. Then ω3=∠+∠=∠ OCDACOACD  9. The whole is 

equal to the sum of 

its parts 

10.  ω6  AOD =∠  10.  The central angle 

of a circle is equal 

to twice its exterior 

angle 

11. o
COAOACOCA 180=∠+∠+∠  11. The sum of the 

angles of a triangle 

equal 180 degrees 

12. o
COA 180=∠++ ωω  12. Substitution of 6 

13. COA
o ∠−= 1802ω  13. Subtracting 

∠ COA from both 

sides  

14. o180COA   + COB =∠∠  14. There are 180 

degrees in a 

straight line 

15. COA  180  COB o ∠−=∠  15. Subtracting 

COA ∠  from both 

sides 



 

1. CRC Standard Mathematical Tables Twelfth Edition; The 

Chemical Rubber Co. Cleveland, OH; January 1964; page 410. 
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ACTION PROOF 

16. Therefore EOCE =  16. The sides residing 

opposite equal 

angles of a triangle 

are equal 

17. Designate 

              CE  as f  

              OA  as l  

              ED as v 

              cos 6ω as ψ  

17. Assignment 

18. Then, ( l + f )( l - f ) = v f  18. The means equal 

the extremes (ref. 

similar triangles 

BDE and CEA) 

19. 
( )

ψ

ω

ll

ll

ff

ff
o

2

6180cos2v

22

222

++=

−−+=
 

19. Law of Cosines
1
 

20. 

2

22 )- )( + (
2 








=++

f

ff
ff

ll
ll ψ  

20. Substitution of 

line 18 into line 19 

21. 42243224 22 llll +−=++ fffff ψ  21. Cross 

multiplication and 

squaring of terms 

22. ( ) 032 4223 =−+ lll ff ψ  22.  Collection of 

terms 

23. 0
22

3 3
23 =








−








+

ψψ

l
f

l
f  

23. Division by 

common 

denominator and 

cancellation of 

terms 
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13.3.2.  Proof. 

From Equation 1: 

cos cos
cos3 3

4

3

4
0φ φ

φ
− − =   

Letting 

ωφ 2=  

Then 

0
4

)6cos(
)2cos(

4

3
)2(cos3 =−−

ω
ωω  

Next, substituting ψ  for ω6cos  gives: 

0
4

)2cos(
4

3
)2(cos3 =−−

ψ
ωω  

Then, multiplying each term by 
)2(cos2 3

3

ωψ

l
−  yields: 

0)
4

(
)2(cos2

)]2cos(
4

3
[

)2(cos2
)]2([cos

)2(cos2 3

3

3

3
3

3

3

=++−
ψ

ωψ
ω

ωψ
ω

ωψ

lll
 

0
)2(cos8)2(cos8

3

2 3

3

2

33

=++−
ωωψψ

lll
 

0
2)2(cos42

3

)2(cos8

3

2

2

3

3

=−







+

ψωψω

llll
 

From triangle CEO of Figure 11, it is readily apparent 

that 
)2cos(

2/

ω

l
=f  

Hence, 

)2(cos8 3

3
3

ω

l
=f ; 

)2(cos4 2

2
2

ω

l
=f , such that: 

0
22

3 3
23 =
















±

ψψ

l
m

l
ff   

The minus signs in the above term account for negative 

values of ψ  with l always being positive. 
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13.3.3.  Assumed Forms. 

Below, the CRT is transformed into various forms of the 

Generalized Cubic Equation (Ref. Equation 32).  For some of 

these transforms, it is demonstrated that ψ, or cos (6ω), 
is coefficient driven; that is, it is fully determinable by 

coefficient manipulation. 

Equation 38.  Cubic Resolution Transform (CRT). 

0
22

3 3
23 =
















±

ψψ

l
m

l
ff  

When zf = , the above CRT may be depicted by a 

Generalized Cubic Equation whose third term 

coefficient is equal to zero as follows: 

023 =++ νσzz   

The CRT assumes the following intermediate form (obtained 

by letting Vuf += ): 

Equation 39.  CRT Intermediate Form. 

0
2

33
3

2

3
3 3

32
223 =+

−
+








++








++ V

V
u

V
VuVu

ψψψ

llll
 

It assumes a Transformed Intermediate Form (when ψ/l−=V ): 

Equation 40.  CRT Transformed Intermediate Form. 

( ) 01
22

3 2

3

3
23 =−+








− ψ

ψψ

ll
uu  

Rearrangement of Equation 38 terms permits resolution of 

Cubic Equations devoid of second order terms as follows: 

Equation 41.  CRT Rearranged Form. 

( ) ( ) 023 323 =−− ff ψll  

For z=l , the CRT Rearranged Form is depicted 

by a Generalized Cubic Equation whose second 

term coefficient is equal to zero as follows: 

03 =++ δγzz   

Comparing like coefficients renders: 

23 f−=γ  
32 fψδ −=  

Or, 

3

γ
−=f  
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2

33

)
3

(2
2

)6cos(
γ

δδ
ϖψ

−

−=
−

==
f

 

However, since: 

f

z

f 2

2/
)2cos( ==

l
ϖ   [Ref. Figure 11] 

zf =)2cos(2 ϖ  

Or, 

)2cos(
3

2 ϖ
γ

−=z  

The relationship directly above is of use for determining a 

value for z represented in equations of the following 

Generalized Cubic Equation reduced form under conditions 

when the R, S, and T sub-element terms are not equal to 

unity (Ref. Section 13.1); that is, θtan≠z  ( θtan  being 

determined from ζ as derived in Equation 36). 

03 =++ δγzz  

The CRT Rearranged Transformed Form is achieved when Vu +=l : 

Equation 42.  CRT Rearranged Transformed Form. 

( ) ( ) 02333 3232223 =−−+−++ fVfVufVuVu ψ  

This specifies the actual Generalized Cubic 

Equation format as follows: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

For 1=α  and uz = , comparing like coefficients gives: 

V3=β  

( )223 fV −=γ  
323 23 fVfV ψδ −−=  

Or, 

3

β
=V  

3

22 γ
−= Vf  

3

2 γ
−= Vf  

)
3

3
(

3
)

3
( 2 γβ

−=  



 

 

109 

γβ 3
3

1 2 −=  

3

23

2

3

f

VfV δ
ψ

−−
=  

2

3

23

23

)3()
3

1
(2

)
3

(3

γβ

δ
γ

−

−−−
=

VVV

 

2

3

2

3

)3(
27

2

2

γβ

δγ

−

−+−
=

VV
 

2

3

2

3

)3(
27

2

)
27

27
()

9

9
)(

3
()

3
(2

γβ

δ
β

γ
β

−

−+−
=  

2

3

2

3

)3(2

2729

γβ

δβγβ

−

−−
=  

However, since: 

f

2/
)2cos(

l
=ϖ   [Ref. Figure 11] 

f2

l
=  

f

Vz

2

+
=  

zVf =−)2cos(2 ϖ  

Or, 

)]2cos(32[
3

1 2 ϖγββ −−−=z  

The relationship directly above is of use for determining a 

value for z represented in Generalized Cubic Equations 

under conditions when the R, S, and T sub-element terms are 

not equal to unity (Ref. Section 13.1); that is, θtan≠z  

( θtan  being determined from ζ as derived in Equation 36). 

The transformed intermediate form results when fV = : 

Equation 43.  CRT Rearranged Transformed Intermediate Form. 

( ) ( ) 0123 323 =+−+ ψfufu  
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13.3.4.  Real Root Solution. 

CRT equations expressed above all incorporate, or make 

reference to, a factor ψ which is equal to the cos (6ω).  
This sub-section pertains to the cases where: 

1)6cos(1 +≤≤− ω  [Ref. Section 15.3] 

As example, Characteristic Cubic Equation 31 is resolved 

below for the specific case when 2=R , 3=S and 9/13=ζ . 

First, T is calculated in order to assure that it produces 

a real root.  Since imaginary roots occur in pairs, this is 

really a moot point. 

9/13)3tan( == θζ  

o30484647.553 =θ  

o43494882.18=θ  

3

1
tan =θ  

RR Rz θθθ tan
3

2
)

3

1
(2tan2tan =====  

SS Sz θθθ tan1)
3

1
(3tan3tan =====  

TT Tz θθ tantan ==  

o

R 69006753.33)
3

2
arctan( ==θ  

o

S 45)1arctan( ==θ  

θθθθ 3=++ TSR  

)(3 SRT θθθθ +−=  

)4569006753.33(30484647.55 ooo +−=  
o38522106.23−=  

θθ tan432432432.0tan TT =−=  

T=
−

3/1

432432432.0
 

=− 297297297.1  

Such that 

702702702.3)( −=++−= TSRB  

486486486.0)( −=++= STTSRC  

783783783.7+=−= RSTD  
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Now, the associated Characteristic Cubic Equation is  

023 =+++ DCRBRAR  [Ref. Equation 31] 

0783783783.7486486486.0702702702.3 23 =+−− RRR  

In order to resolve this above equation, first select a 

suitable format from Section 13.3.3 which matches it, and 

then compare respective coefficients.  This approach is 

demonstrated as follows: 

 

Equation 42 is selected from the excerpt since it matches 

the above format, 

( ) ( ) 02333 3232223 =−−+−++ fVfVufVuVu ψ  

While viewing u terms to be synonymous with R values, 

respective coefficients are compared to return the 

following results, 

234234234.1
3

702702702.3
−=

−
=V  

298266655.1
3

486486486.02 =+= Vf  

)6cos(78215113.0
2

783783783.73
3

23

ωψ =−=
−−

=
f

VfV
 

Secondly, resolve the unknown equation given above as 

follows: 

)360457955.141(,542045.218,457955.1416 oooo +=ω  

3

457955.501
;

3

542045.218
;

3

457955.141
2

ooo

=ω  

ooo 1526517.167;84734834.72;15265166.47=  

974965937.0;294918522.0;680047415.0)2cos( −++=ω  

]974965937.0;294918522.0;680047415.0)[2()2cos(2 −++= ff ω  

]974965937.0;294918522.0;680047415.0)[59653331.2( −++=  

531531531.2;765765765;765765765.1 −++=  

l=  

Now since, 

Vu −= l  

)234234234.1()531531531.2;765765765;76575842.1( −−−++=  

297297297.1;2;3 −++=  

TSR ,,=  
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A second example resolution is presented below for the 

following equation: 

0
4

1
34 23 =−+− RRR  

Substituting uR =  into the above given equation renders: 

0
4

1
34 23 =−+− uuu  

Equation 42 is selected from the Cubic Resolution Transform 

excerpt since it matches the above format, 

( ) ( ) 02333 3232223 =−−+−++ fVfVufVuVu ψ  [Ref. Equation 42] 

Comparing respective coefficients returns the following 

results, 

333333333.1
3

4
−=

−
=V  

881917103.0
3

32 =−= Vf  

)6cos(722182116.0
2

4/13
3

23

ωψ ==
+−

=
f

VfV
 

Since 1)6cos(1 +≤≤− ω  the three roots are all real.  Hence, 

)36076506489.43(;76506489.43;76506489.436 oooo ++−+=ω  
ooo 76506489.403;2349351.316;76506489.43 +++=  

3

76506489.403
;

3

2349351.316
;

3

76506489.43
2

ooo +++
=ω  

ooo 588355.134;411645.105;58835496.14 +++=  

702008323.0;265752058.0;967760382.0)2cos( −−+=ω  

)702008323.0;265752058.0;967760382.0)(2()2cos(2 −−+= ff ω  

)702008323.0;265752058.0;967760382.0)(763834206.1( −−+=  

238226293.1;46874257.0;706968865.1 −−+=  

l=  

Now since, 

Vu −= l  

)333333333.1()238226293.1;46874257.0;706968865.1( −−−−+=  

09510704.0;864590763.0;040302198.3 +++=  

TSR ,,=  



 

 

113 

13.3.5.  Imaginary Root Solution. 

This sub-section pertains to the cases where )6cos( ω  is 

either less than minus one, greater than positive one (Ref. 

Section 15.3), or exists as a complex variable or pure 

imaginary number (Ref. Section 20 -- Problem Number 30). 

 

The following given Generalized Cubic Equation is selected 

for resolution: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

0055544.2153 23 =−+ zz  

In this case, its first order term is equal to zero. 

 

Equation 38 is employed in order to resolve this given 

Cubic Equation as follows: 

0
22

3 3
23 =
















±

ψψ

l
m

l
ff  [Ref. Equation 38] 

The variable ‘f’ appears as a representation of ‘z’ in 

the given Cubic Equation. 

 

Secondly, a comparison between coefficients of like 

terms is carried out as follows: 

ψ2

3
3

l
=  

ψ2
1

l
=  

ψ2
055544.215

3
l

−=−  

2)
2

( l
l

ψ
−=  

2)1( l−=  

Then, 

055544.2152 =l  

055544.215=l  

66477221.14=



 

1. CRC Standard Mathematical Tables Twelfth Edition; 

The Chemical Rubber Co. Cleveland, OH; January 

1964; page 433. 
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From above, 

1
2

=
ψ

l
 

ψ=
2

l
 

)6cos(332386106.7 ω=  

Since the )6cos( ω  lies outside of the -1 through +1 real 

number regime, this analysis adopts an imaginary numerical 

solution by making use of the following identity: 

)cos(cosh ixx = FOOTNOTE1
 

Then, by letting: 

ix=ω6  

)6cos(cosh ω=x  

332386106.7=  

Or, 

680765435.2=x  

ω6680765435.2 == iix  

ω2
3

680765435.2

3
==

iix
 

ω2893588478.0
3

== i
ix

 

893588478.0
3

=
x

 

Accordingly, 

)
3

cos(
3

cosh
ixx

=  

)2cos(89388478.0cosh ω=  

)2cos(426534261.1 ω=  

Where, 

f

2/
)2cos(

l
=ω  

f2
426534261.1

l
=  

)426534261.1(2

66477221.14
=f  

14.5=  
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Check: 

0055544.2153 23 =−+ zz  

0055544.215)14.5(3)14.5( 23 =−+  

0055544.2152588.79796744.135 =−+  

0055544.215055544.215 =−  

00 =  Q.E.D. 

Now, the two remaining imaginary roots are determined as 

follows: 

0))(14.5( 2 =++− cbzzz  

014.5)14.5()14.5( 23 =−−+−+ czbczbz  

0055544.2153 23 =−+ zz  

Equating like terms yields: 

055544.21514.5 −=− c  

8396.41=c  

314.5 =−b  

14.8=b  

Check, 

014.5 =− bc  

0)14.8(14.58396.41 =−  

08396.418396.41 =−  

00 =  

Lastly, via Quadratic Formula 

)4(
2

1
, 2

32 cbbzz −±−=  

])8396.41(4)14.8(14.8[
2

1
, 2

32 −±−=zz  

)0988.10114.8(
2

1
, 32 −±−=zz  

Check: 

0)]0988.10114.8(
2

1
)][0988.10114.8(

2

1
)[14.5( =−−−−−+−−− zzz  

0)]}0988.101()14.8[(
4

1
14.8]{14.5[ 22 =−−−++− zzz  

0)
4

3584.167
14.8)(14.5( 2 =++− zzz  

0)8396.4114.8)(14.5( 2 =++− zzz  

0)8396.41(14.5)]14.8(14.58396.41[)14.514.8( 23 =−−+−+ zzz  

0055544.215)8396.418396.41(3 23 =−−++ zzz  

0055544.2153 23 =−+ zz  

 



 

1. CRC Standard Mathematical Tables 23rd Edition; Samuel 

M. Selby - Editor in Chief; CRC Press, Inc, Cleveland 

Ohio; 1975; page 104. 

2. On-line website address: 

http://en.wikipedia.org/wiki/Cubic_function 

3. Op. cit. 

4. Ibid. 

5. Ibid. 
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13.3.6.  CRT in Relation to Existing State-of-the-Art. 

The CRT (Ref. Equation 38) resolves Cubic Equations 

directly!  It does so regardless of what format they may 

assume. 

 

In stark contrast, basic present day resolutions cited 

below are limited in the sense that they can operate only 

upon cubic formats which are devoid of their second order 

terms: 

• The Trigonometric Solution of the Cubic Equation1 

• Cardano’s Method2 

 

Accordingly, such presently accepted Cubic Resolution 

Techniques require that given Cubic Equations first must 

undergo a transformation process before resolution can be 

made possible. 

 

Now, the analysis presented below correlates such limited 

resolutions, as cited above, to a broader overall CRT 

philosophy which applies directly to all Cubic Equations, 

regardless of format 

 

In so doing, the CRT ascribes its newly defined geometry 

(Ref. Figure 11) to such well known, already existing 

Trigonometric Solution of the Cubic Equation posed in the 

first bullet above -- one whose sole purpose is to resolve 

the following unknown equation 
  
when known values for both 

“a” and “b” are supplied, or postulated: 

03 =++ baxx  Footnote 3
 

Such resolution is achieved by letting θcosmx = Footnote 4. 

Now, by substituting this expression into the unknown 

equation, the following equality is obtained: 

03 =++ baxx  

= bamm ++ θθ coscos33  Footnote 5
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This unknown equation ultimately becomes resolved by 

multiplying each of its derived terms by a factor of 4/m3, 

as follows: 

0
4

cos
4

cos4
32

3 =++
m

b

m

a
θθ  

A particular value of “m” is calculated such that: 

3
4

2
−=

m

a
 

So, “m” must equal: 

3

4a
m −=  

When this occurs, the equation above reduces to: 

0
4

cos3cos4
3

3 =+−
m

b
θθ  

Multiplying each term in Equation 1 by a factor of 4 

produces the following result: 

)3cos(
4

1
cos

4

3
cos3 θθθ +=  [Ref. Equation 1] 

)3cos(cos3cos4 3 θθθ +=  

Or, 

0)3cos(cos3cos4 3 =−− θθθ  

But, 

0
4

cos3cos4
3

3 =+−
m

b
θθ  

Or, 

)3cos(cos3cos4 3 θθθ =−  

3

3 4
cos3cos4

m

b
−=− θθ  

 

Then, 

3

4
)3cos(

m

b
−=θ  

Hence, both “m” and the “cos (3θ) are determined by 
manipulation of the given coefficients “a” and “b” in the 

afforded unknown equation. 
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Thereafter, the posed unknown equation may be resolved by 

first determining θ as follows: 

Where, 









−−=

3

4
arccos3

m

b
θ  

Or, 









−=

3

4
arccos

3

1

m

b
θ  

The value “x” is ascertained simply by multiplying the 

obtained value of “m” by that of “cos θ. 
 

Secondly, both the CRT and its associated geometry, as 

alluded to above and afforded in Figure 11, are directly 

associated with Equation 1 as follows: 

From above: 

)3cos(cos3cos4 3 θθθ +=  

Or, 

0)3cos(cos3cos4 3 =−− θθθ  

Now, substituting 2ω for θ yields: 

0)6cos()2cos()2(cos4 3 =−− ωωω  

Lastly, assigning ψ for 6ω renders: 

0)2cos()2(cos4 3 =−− ψωω  

The CRT represents a transform of this relationship as 

follows: 

0
22

3 3
23 =
















±

ψψ

l
m

l
ff  [Ref. Equation 38] 

Multiplying thru by 
3

f

ψ
−  gives: 

0
22

3
3

3

=







+







−−

ff

ll
ψ  

Or, 

0
2

3

2 3

3

=−− ψ
ff

ll
 

And since, 

)2cos(

2/

ω

l
=f  



 

1. CRC Standard Mathematical Tables 23rd Edition; Samuel 

M. Selby - Editor in Chief; CRC Press, Inc, Cleveland 

Ohio; 1975; page 104. 
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)2cos(2 ω

l
=  

Or,  

)2cos(2 ωf=l  

Substituting this expression for l above finally renders 

the following equality: 

0)2cos(3)2(cos4 3 =−− ψωω    Q.E.D. 

In conclusion, the Trigonometric Solution of the Cubic 

Equation1 may be relegated to the geometry presented in 

Figure 11 by ascertaining its relationship to the CRT as 

follows: 

Since, 

0
2

3

2 3

3

=−− ψ
ff

ll
 

Multiplying each term by a factor of 2f3 establishes the 

CRT Rearranged Form:  

( ) ( ) 023 323 =−− ff ψll  [Ref. Equation 41] 

Comparison of like terms with those expressed in the 

unknown equation, reiterated below, yields the 

following results when l  is permitted to assume the 

value of x: 

( ) ( ) 023 323 =−− ff ψll  

03 =++ baxx  

af =− 23  

3

a
f −=  

3
22

a
f −=  

3

4a
−=  

m=  

Or,  

2

m
f =



 

1. CRC Standard Mathematical Tables 23rd Edition; Samuel 

M. Selby - Editor in Chief; CRC Press, Inc, Cleveland 

Ohio; 1975; page 104. 

2. Ibid. 

3. Ibid. 

4. CRC Standard Mathematical Tables 12th Printing; Charles 

D. Hodgman, M.S. - Editor in Chief; The Chemical 

Rubber Company, Cleveland Ohio; 1964; page 432. 
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( ) bf =− 32ψ  

32 f

b
−=ψ  

3)
2

(2
m

b
−=ψ  

3

4

m

b
−=ψ  

)3cos( θ=  

Therefore, when the value of “m/2” ascertained in the 

already existing Trigonometric Solution of the Cubic 

Equation1 is permitted to portray length “f” shown in Figure 

11, its associated ascertained value “3θ” may be 
represented by “6ω” in such figure. 
 

Additionally, in order to successfully resolve an equation 

of the form 03 =++ baxx  Footnote 2
 by use of the Trigonometric 

Solution of the Cubic Equation3, a thought to be unknown 

concept first should be applied which relegates a resulting 

mathematical analysis to be conducted in the same real, or 

imaginary regime as that afforded by any given equation. 

 

This consists of selecting an equation format from the list 

specified below whose coefficients exhibit the same sign 

convention of such given equation: 

•   

•   

• 0)3sinh(sinh3sinh4 3 =−+ xxx Footnote 4
 

For example, the equation 0521846994.0301288503.13 =−+ zz  may be 

resolved as follows, where: 

023 =+++ δγβα zzz  [Ref. Equation 32] 

1=α  

0=β  

301288503.1=γ  

521846994.0−=δ

0)3cos(cos3cos4 3 =−− θθθ  [Ref. Equation 1] 

0)3sin(sin3sin4 3 =+− θθθ  [Ref. Equation 2] 



 

1. CRC Standard Mathematical Tables 12th Printing; Charles 
D. Hodgman, M.S. - Editor in Chief; The Chemical 

Rubber Company, Cleveland Ohio; 1964; page 432. 

2. Ibid. 
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Since γ is positive and δ is negative, the third equation, 

0)3sinh(sinh3sinh4 3 =−+ xxx  Footnote 1
, is selected from the list 

above because it  matches the above given sign convention. 

Then, letting, 

xmz sinh=  

xmz
333 sinh=  

Via substitution:  

0521846994.0301288503.13 =−+ zz  

00 23 =+++ δγzzz  

0sinhsinh 33 =++ δγ xmxm  

Or, 

04sinh4sinh4
32

3 =++
m

x
m

x
δγ  Footnote 2

 

Matching respective terms renders the following equalities: 

04sinh4sinh4
32

3 =++
m

x
m

x
δγ

 

0)3sinh(sinh3sinh4 3 =−+ xxx  

2
43

m

γ
=  

γ
3

42 =m  

3
2

γ
=m  

)
3

2(
3

43 γ
γ=m  

33

8 3γ
=  

3
4)3sinh(

m
x

δ
−=  

33

8
4

3γ

δ
−=  

32

33

γ

δ
−=
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3301288503.12

)521846994.0(33
)3sinh( +=x  

913344637.0+=  

818753074.03 +=x  

272917691.0+=x  

276318334.0sinh +=x  

xmz sinh=  

xsinh
3

2
γ

=  

)276318334.0(
3

301288503.1
2=  

363970234.0=  
o20tan=  

Check, 

0521846994.0301288503.13 =−+ zz  

0521846994.0)363970234.0(301288503.1)363970234.0( 3 =−+  

0521846994.047363028.0048216713.0 =−+  

0521846994.0521846994.0 =−+  

13.4.  Resolution via the Cubic Properties of an Ellipse. 

In order to better demonstrate the far-reaching implication 

of CRT, independent of present day Cubic Resolutions, its 

overall philosophy is hereby further extended to a new 

resolution via the Cubic Properties of an Ellipse, complete 

with its own innate geometry, as follows: 

 

Consider the ellipse shown in Figure 12  with major and 

minor axes of lengths a and b, respectively; where point A 

is placed at the ellipse upper juncture with the y-axis, 

and to which right triangle ABC  is adjoined with the 

following properties: 

aAB =  (Hence point B represents a focus) 

1=AC  

θ=∠OAB  

Then, 

a

b

AB

OAa

AC

AB
====

1
cosθ  

Or, 

OAab == 2
 



 

1. CRC Standard Mathematical Tables 12th Printing; Charles D. 
Hodgman, M.S. - Editor in Chief; The Chemical Rubber 

Company, Cleveland Ohio; 1964; page 414. 
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Figure 12.  Cubic Properties of the Ellipse. 

 

Now, the equation for an ellipse is given below: 

22 )()(1
b

y

a

x
+= Footnote 1 

2

2

2

2

b

y

a

x
+=  

2

22

b

y

b

x
+=  

Multiplying each side of the equation by “b2” gives: 

222 ybxb +=  

When, 

OBxB =  

θsinAB=  

θsina=  

Dx=  

θ222
sinaxD =  

)cos1( 2 θ−= b  

)1( 2ab −=  

)1( bb −=  

2
bb −=
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Then, 

222

DD ybxb +=  

22 )( Dybbb +−=  

Or, 

230 Dyb +−=  

23

Dyb =  

Which equates to, 

BDya D ==3  

Since alternate interior angles are equivalent: 

θ=∠=∠ ABDOAB  

Then, by the Law of Cosines: 

)cos())((2
222

ABDADBDABBDAD ∠−+=  

θcos))((222
ayay DD −+=  

))()((2)( 3223 aaaaa −+=  

babb +−= 23 2  

Check via Pythagorean Theory: 

222

)( BDOAOBAD −+=  

22
)( DD ybx −+=  

232 )()( abbb −+−=  
6322 2 ababbb +−+−=  

babb +−= 23 2  

Letting AD  be represented as “c”, the above equation 

becomes: 

babbc +−= 232 2  

Lastly, re-arranging above terms results in the following 

Generalized Cubic Equation [Ref. Equation 32] with α equal 
to unity and z represented by b: 

Equation 44.  Cubic Elliptical Relationship. 

02 223 =−+− cbabb  

In this case, Equation 44 is of cubic form.  However, when 

b becomes represented by a2, the following sixth order 

equation results: 

Equation 45.  Sixth Order Elliptical Relationship. 

02 2256 =−+− caaa  
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Hence the Cubic Properties of an Ellipse (Ref. Figure 12) 

are suitable for resolving 3rd and 6th order equations as 

follows:  

Given the equation, 

0048634409.094874013.1 23 =−+− zzz  

Since the coefficient of the third term is equal to unity, 

in order to determine whether this given Generalized Cubic 

Equation (ref. Equation 32) qualifies as a Cubic Elliptical 

Relationship, determine the value of “a” by setting its β 
coefficient equal to -2a (ref. Equation 44) as follows: 

a294874013.1 −=−=β  

a=
2

94874013.1
 

o
a 13cos974370064.0 ==  

949397023.02 === abz  
 

02 223 =−+− cbabb  [ref. Equation 44] 

0048634409.0949397023.0)949397023.0)(974370064.0(2)949397023.0( 23 =−+−  

0048634409.0949397023.0756506088.1855743476.0 =−+−  

0805140499.1805140499.1 =−  

00 =  

Hence the given equation qualifies as a Cubic Elliptical 

Relationship with its first root being 
2

1 )13(cos949397023.0 oz == . 

 

In order to verify that such given equation resides in a 

domain which may be resolved by the CRT: 

 

Equation 42 is selected from the excerpt since it matches 

the above format, 

( ) ( ) 02333 3232223 =−−+−++ fVfVufVuVu ψ  

While considering u terms to be synonymous with z values, 

respective coefficients are compared to return the 

following results, 

649580043.0
3

94874013.1
−=

−
=V  

297692625.0
3

12 ±=−±= Vf  

)6cos(999923457.0
2

048634409.03
3

23

ωψ ==
+−

= m
f

VfV
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Secondly, resolve the unknown equation given above as 

follows: 

)3602910867.179(;7089133.180;2910867.1796 oooo +=ω  

Or, 

)360708913326.0(;2910867.359;708913326.06 oooo +=ω  

3

2910867.539
;

3

7089133.180
;

3

2910867.179
2

ooo

=ω  

ooo 7636956.179;23630444.60;76369556.59=  

Or, 

3

708913326.360
;

3

2910867.359
;

3

708913326.0
2

ooo

=ω  

ooo 236304442.120;7636956.119;236304442.0=  

999991495.0;496424017.0;503567477.0)2cos( −++=ω  

Or, 

503567477.0;496424017.0;999991495.0)2cos( −−+=ω  

)999991495.0;496424017.0;503567477.0)(297692625.0(2)2cos(2 −++=ωf  

595380186.0;295563537.0;299816648.0 −++=  

l=  

Or, 

)503567477.0;496424017.0;999991495.0)(297692625.0(2)2cos(2 −−−=ωf  

299816648.0;295563537.0;595380186.0 ++−=  

l=  

Now since, 

Vu −= l  

)649580043.0()595380186.0;295563537.0;299816648.0( −−−++=  

054199857.0;94514358.0;949396691.0 +++=  

321 ;; zzz=  

Or, 

Vu −= l  

)649580043.0()299816648.0;295563537.0;595380186.0( −−++−=  

949396691.0;94514358.0;054199857.0 +++=  

123 ;; zzz=  

 

Check, 

0048634409.094874013.1 1

2

1

3

1 =−+− zzz  

0048634409.094874013.1 23 =−+− bbb  
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0048634409.0)()(94874013.1)( 22232 =−+− aaa  

0048634409.094874013.1 256 =−+− aaa  

0048634409.0)13(cos2 256 =−+− aaa o  

0048634409.0)13(cos)13)(cos13(cos2)13(cos 246 =−+− oooo  

0048634409.0)13(cos)13(cos2)13(cos 256 =−+− ooo  

0048634409.0)974370064.0()974370064.0(2)974370064.0( 256 =−+−  

0048634409.0949397023.075650609.1855743476.0 =−+−  

0805140499.1805140499.1 =−  

00 =  

 

0048634409.094874013.1 2

2

2

3

2 =−+− zzz  

0048634409.094514358.0)94514358.0(94874013.1)94514358.0( 23 =−+−  

0048634409.0054199857.0740802517.1844293345.0 =−+−  

0789436926.1789436925.1 =−  

00 =  
 

0048634409.094874013.1 3

2

3

3

3 =−+− zzz  

0048634409.0054199857.0)054199857.0(94874013.1)054199857.0( 23 =−+−  

0048634409.0054199857.0005724666.0000159218.0 =−+−  

0054359075.0054359075.0 =−  

00 =  

As a further check, z2 and z3 are verified as follows: 

Where, 

))()((048634409.094874013.1 321

23
zzzzzzzzz −−−=−+−  

32132321

2

321

3 ])([)( zzzzzzzzzzzzzz −+++++−=  

Comparing like terms establishes the following two 

relationships: 

94874013.1)( 321 −=++− zzz  

94874013.1321 =++ zzz  

132 94874013.1 zzz −=+  

999343106.0=  

048634409.0321 −=− zzz  

1

32

048634409.0

z
zz =  

051226628.0=  

 

Then, 

23 999343106.0 zz −=  
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And, 

051226628.032 =zz  

051226628.0)999343106.0( 22 =− zz  

051226628.0999343106.0
2

22 =− zz  

Completing the Square renders: 

22

2

2

2 )
2

999343106.0
(051226628.0)

2

999343106.0
(999343106.0 +−=+− zz  

198445032.0)
2

999343106.0
( 2

2 =−z  

198445032.0
2

999343106.0
2 ±=−z  

445471697.0499671553.02 ±=−z  

445471697.0499671553.02 ±=z  

054199856.0;94514325.0=  

23 999343106.0 zz −=  

94514325.0;054199856.0=  

The above given equation also portrays the following sixth 

order equation: 

02 2256 =−+− caaa  [Ref. Equation 45] 

0048634409.094874013.1 46 =−+− zaa  

Such postulated equation is resolved in the same manner by 

first verifying that is qualifies as a bonafide Sixth Order 

Elliptical Relationship as follows: 

a294874013.1 −=−=β  

a=
2

94874013.1
 

o
a 13cos974370064.0 ==  

02 2256 =−+− caaa  

0048634409.0)974370064.0()974370064.0)(974370064.0(2)974370064.0( 246 =−+−  

0048634409.0)13(cos)13)(cos13(cos2)13(cos 246 =−+− oooo
 

0048634409.0)13(cos)13(cos2)13(cos 256 =−+− ooo
 

0048634409.0)974370064.0()974370064.0(2)974370064.0( 256 =−+−  

0048634409.0949397023.0756506088.1855743476.0 =−+−  

0805140499.1805140499.1 =−  

00 =  
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Note that the above analysis was conducted without having 

to impose the present day measure of first having to 

transform the given Cubic Equation into another devoid of a 

second order term. 

 

Hence the given equation qualifies as a Sixth Order 

Elliptical Relationship with its first root being 
oz 13cos974370064.01 == . 

 

The six roots of the given equation are obtained by 

employing roots determined above, as follows: 

Where, 

054199857.0;94514358.0;949396691.0;; 321 +++=bbb  

Since, 

ba ±=  

974369894.0949396691.0111 +=+=+= ba  

974369894.0949396691.0112 −=−=−= ba  

972184951.094514358.0221 +=+=+= ba  

972184951.094514358.0222 −=−=−= ba  

232808627.0054199857.0331 +=+=+= ba  

232808627.0054199857.0332 −=−=−= ba  
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13.5.  Resolution of Generalized Cubic Equations of the Form z3+δ=0. 

A Generalized Cubic Equation (GCE) whose β and γ terms are 

equal to zero assumes the following form: 

0
23

=+++ δγβα RRR zzz  [Ref. Equation 32] 

0001
23

=+++ δRRR zzz  

0
3

=+ δRz  

Where, 

γ

βδ
ζ

−

−
=

1
 [Ref. Equation 36] 

01

0

−

−
=

δ
 

δ=  

Then, 

0
3

=+ ζRz  

33
)tan( θζ RzR =−=  

θζ tan3 RzR =−=  

Equation 46.  ‘R’ Determination for a GCE Devoid of its 2nd & 3rd Terms. 

θζ tan3 RzR =−=  

An example of how Equation 46 is applied is 

afforded below for the particular condition when: 

9/13)3tan( == θξ  

o30484647.553 =θ  
o43494882.18=θ  

3/1tan =θ  

Where, 

3 ζ−=Rz  [Ref. Equation 46] 

3 )
3

3
(

9

13
−=  

3 39
3

1
−=  

3
tan)391211443.3(

3

1 R
R ==−= θ  

130403814.1−=Rz  

R=391211443.3  

  The equation form 0
3

=+ ζRz  also applies to GCE’s when Rzβγ −=  
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SECTION 14.  CURVE MAPPING. 

Curve Mapping characterizes relative movement through 

alterations evidenced within coefficient structures, also 

termed the fabric of mathematical functions, which serve to 

independently specify a stationary curve shape which 

exhibits a singular location in space. 

 

Different perspectives of such unique curve in space are 

gained, or realized by applying a relativistic approach 

which permits a mobile origin to roam, or move about to 

other pre-selected points upon an orthogonal grid pattern. 

 

Curve Mapping mathematically operates upon just one 

particular coefficient structure, or equation format at a 

time.  As indicated above, this consists of a suite, or 

multiplicity of individual mathematical functions that all 

describe the same, exact curve shape.  Their fabric changes 

depending upon which particular viewpoint of the unique 

curve shape is perceived at any given time.  Hence, varying 

perspectives return different perceptions of the same 

singular entity!  The mobile origin concept allows this to 

occur, thereby influencing the particular constitution of 

the fabric, or coefficient structure, depending upon 

relative location. 

 

Each equation format consists of a set, or family of 

coefficient permutations comprised of intrinsic RST 

terminology.  Hence, a gateway for Equation Sub-element 

categorizations becomes realized! 

 

The following Parabolic and Generalized Cubic Function 

coefficient structures are to be examined for reasons 

purported in Section 1. 

y c bx  ax 2 =++  (Ref. Section 14.1) 

yzzz =+++ δγβα 23
 (Ref. Section 14.2) 

Below it is explained just how such overall fabric, or 

coefficient structure houses intrinsic root and mobile 

origin location information, which may be deciphered in 

terms of algorithmic interpretations posed below. 

 

The Curve Mapping process is presented with hopes, or 

aspirations of availing a deeper understanding into 

Equation Sub-element categorizations. 
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14.1.  Parabolic Curve Mapping. 

Figure 13 depicts a family of Parabolic Curves, all of 

which are superimposed directly upon one another and 

feature identical curve shape. 

 

Such multiplicity of associated curves: 

• Satisfy all constraints imposed upon them by the 

General Parabolic Function: 

y  c bx  ax 2 =++  

• Subscribe to the singular curve shape: 

y  ax 2 =  

14.1.1.  Singularity Proof. 

Figure 13 introduces three points as follows: 

• Point O represents a primary origin that is located at 

the low point of the following given Function: 

O

2

O y  ax =  

This origin resides at 0y  x OO ==  such that, 

0 a(0)2 =  

The subscripts xO and yO shown above denote respective 

horizontal and vertical displacements between point O, 

the primary origin, and various other locations upon 

this curve 

• Point A, positioned directly above, or below, Point O 

an arbitrary distance yM, locates a relative secondary 

origin from which the unique Parabolic Curve set 

described above may be viewed.  Since there exists 

only a vertical displacement between relative origins: 

AO  x x =  

My−= AO y  y  Given that yM is a negative quantity 

Then, from above: 

O

2

O y  ax =  

My−= A

2

A y  ax  
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Figure 13.  Quintessential Relationship for Parabolic Curve Mapping. 
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• Point B, positioned directly to the right, or left, of 

Point A an arbitrary offset of xM, locates a relative 

tertiary origin from which this singular Parabolic 

Curve also may be viewed.  From Figure 13 it is 

evidenced that MAB  x  x x += , given that xM also is 

displayed as a negative quantity such that: 

MBA  x  x x −=  
2

MBM

2

B

2

A  xx x2  x x +−=  

M

2

MBM

2

BM

2

A y xxax 2 ax y ax ++−=+ a  

From above, since: 

My−= A

2

A y  ax  

It follows that, 

A

2

A y  ax =+ My  

By =  

Equating the above two results renders, 

BM

2

MBM

2

B y)y x()xax 2( ax =++− a  

For any assigned values of a, xM and yM, respectively, let: 

M2axb −=  

Myc +=
2

Max  

Then, 

BB

2

B y  c  bx  ax =++  

Respective xM and yM values for this resulting Parabolic 

Function, can be determined from any given coefficients as 

follows: 

 
2a

b
 - x M =  

2

Max −= cyM  

2)
2a

b
 a(- −= c  

4a

b
  

2

−= c  



 

 135 

Of note, the curve for this given Parabolic Function (Ref. 

Figure 13), along with two others which are associated with 

the transforms derived above, coincide; i.e., all three 

collapse, or become superimposed upon one another.  Such 

three functions are re-listed as follows: 

O

2

O y  ax =  

A

2

A y  ax =+ My  

BB

2

B y  c  bx  ax =++  

The very fact that all three functions represent the same 

exact, singular curve is demonstrated below: 

• As yA is set equal to zero: 

A

2

A y  ax =+ My  

0  ax
2

A =+ My  

My- ax
2

A =  

a
-x A

My
±= [Ref. points x1 and x2 in Figure 13] 

• As yA is set equal to zero: 

My−= AO y  y  

My−= 0  

Or, 

My−= yO  

Lastly, via substitution: 

O

2

O y  ax =  

M

2

O y-  ax =  

a
-x O

My
±=  

Ax=  

This is to be expected since AO  x x =  holds for all points 

upon the given Parabolic Function. 

 

In other words, when yA equals zero, it corresponds to 

a relative location on the given Parabolic Curve where 

My−= yO .  For this elevation only, which happens to 

coincide with the x-axis shown in Figure 13, the two xA 

values much coincide with respective xO values (since 

AO  x x = ).  Hence two identical points are mapped out. 
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Moreover, the step function My+= OA yy  signifies that 

for any value of yO, there exists a respective value of 

yA that always is equal to such yA value plus yM. 

 

Since xA shares the same value as xO anywhere along the 

given Parabolic Curve, it becomes obvious that the 

first two functions (of the three designated above) 

map out identical curves because for any selected 

location xO and yO on the given Parabolic Curve, 

another location is mapped out such that xA=xO and 

My+= OA yy , thereby designating an exact curve fit. 

 

This demonstrates that all respective intermediate 

points on the two curves also match up, once 

compensating for the relative displacement of origins. 

For example, location 0y  x OO ==  resides a distance yM 

below the relative x-axis depicted in Figure 13. 

Then, 

My+= OA yy  

My+= 0  

My=  

Since this vertical distance, calculated above, is 

measured off from the second origin (which resides 

at point A), its corresponding location, as 

designated below, superimposes directly upon the 

given location of 0y  x OO ==  as determined from the 

initial origin which resides at point O: 

 0x A =  

My=Ay  

Moreover, considered to be an algebraic variable, the term 

yM can assume an infinite number of values. 

• Its associated compensating term yA is determined via 

the equation 0yy AO =−+ My  (see above).  yA is 

described as compensating because it adjusts for 

values of yO which satisfy O

2

O y  ax = . 

• Its other associated compensating term c is determined 

via the equation below.  The term c is described as 

compensating because it adjusts for values of b2/(4a) 

which satisfy the function y  c bx   ax 2 =++  

4a

b
 

2

+= Myc  
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Likewise, the algebraic variable c also can assume an 

unlimited number of values.  Its associated, compensating 

term b is determined via 0
4a

b
 

2

=+− cyM  (see above) for each 

and every a and c set of values that are proposed. 

Based upon the above analysis, attempting to pictorially 

depict the three identically shaped Parabolic Functions 

described above with respect to a common origin would 

merely superimpose them on top of one another. 

 

Again, this is validated mathematically by transforming the 

function whose origin resides at Point B, cited below, to 

one whose origin resides at point A, and lastly to one 

whose origin resides at Point O as follows; thereby showing 

all three functions to be absolutely identical 

representations of one another: 

BB

2

B y  c  bx  ax =++  

Where 

MAB xxx +=  (Ref. Figure 13) 

AB yy =  (Ref. Figure 13) 

Via substitution, 

AA

2

A y  c  )b(x  )a(x =++++ MM xx  

AA

2

A

2

A y  c bx  )(x)2()a(x =+++++ MMM bxxaax  

Such that, 

Maxb 2−=  

4a

b2

+= Myc  

A

2

A

2

A

2

A y  
4a

b
)2( x)2(  )(x)2()a(x =++−−++ MMMMMM yxaxaxxaax  

A

2
2

222

A y  )(
4a

4
 )(2  )()a(x =++−+ MMMM x

a
yxaxa  

A

2222

A y  )( )(2  )()a(x =++−+ MMMM xayxaxa  

A

2

A y  )a(x =+ My  Q.E.D. 

Lastly, where 

OxxA =  (Ref. Figure 13) 

My+= OA yy  (Ref. Figure 13) 

MM yy +=+ O

2

O y  )a(x  

O

2

O y )a(x =  Q.E.D 
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Alternatively, the three functions may be simultaneously 

mapped so that they instead become illustrated besides one 

another, simply by overlooking their respective origin 

nomenclatures and thereby plotting them with respect to a 

common origin, say the one residing at point A. 

Accordingly, such three Parabolic Curves, devoid of origin 

nomenclature are portrayed in Figure 14 and accorded the 

following designations: 

• A-curve -- The curve whose low point resides at point A, 

and is of the form y  ax 2 =  

• O-curve -- The curve whose low point resides directly 

below that of the A-curve, and is of the form y  ax 2 =+ My  

• B-curve -- The curve also has its low point coinciding 

with the x-axis, but is located at a distance of xM away 

from point A, and is of the form y  c bx   ax 2 =++  

The primary objective of Figure 14 is to demonstrate that 

all three curves are identical by virtue of the fact that: 

• Vertical steps of Δ = yM occur to the A curve for 
respective incremental changes applied to xO.  Then, 

 yA (at ) x  x OA = ∆+=+=   y  y  y  OMO  

• Horizontal steps of δ = xM occur to the B curve for 
respective incremental changes applied to yA.  Then, 

Bx (at )y  y AB = δ   x  x  x AMA +=+=  

Such assignments signify that the two upper curves depicted 

in Figure 14 may be displaced until they exactly coincide 

with the lower given Parabolic Curve.  Naturally the amount 

of their relocation is exactly the distance between 

respective origins. 

 

So, once this compensation for origin difference becomes 

accounted for, the three curves become one, or coincide. 

 

In conclusion, a given Parabolic Function along with two 

transforms derived from it produce a total of three 

identically shaped Parabolic Curves all of which occupy the 

same exact coordinates, where each merits its own 

independent perspective, or point of origin. 

 

Accordingly, it now becomes possible to associate given 

Parabolic Curves with a plethora of other Parabolic 

Functions which exhibit their same exact shape. 
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Figure 14.  Identical Curves Intended to be Superimposed upon Each Other. 

 
 



 

 140 

14.1.2.  The Algorithm. 

Figure 13 now is to be viewed as a grid of potential origin 

relocations away from the low point of any given Parabolic 

Curve.  Such stationary curve then can be perceived from 

Point B, a relocated origin, with the y-axis crossing it. 

 

Consider further that such arbitrarily selected origin upon 

this grid harbors a unique Parabolic Function capable of 

characterizing the given Parabolic Curve on its own. 

 

Such conjecture promotes a possibility to afford unique 

solutions based upon any vantage point, or perspective that 

is desired.  Conversely, the entire grid then would prefer 

an infinite number of solutions to characterize such given 

Parabolic Curve, all of which belong to a family that 

comprises the function ax2 = y. 

 

One might ask why such pretension is necessary in the first 

place, considering that a Parabolic Curve simply may be 

resolved in terms of the variable x, after characterizing 

it at its low point by determining the unknown quantity a 

through any of the curve’s plotted points as follows: 

a = y/x2 

The answer is that only one set of solutions is afforded.  

However, such set is limited because there is no accounting 

of its association with all of the other solutions which 

exist.  And it may very well be another of these solutions 

which really answers what the problem solver is searching 

for – a solution rendered from another perspective, or 

completely independent origin system! 

 

Moreover, such pretext conveys insight into a Equation Sub-

element association that connects families of Parabolic 

Function coefficient relationships together.  More 

specifically, it relates any given Parabolic Curve, not 

only to any arbitrarily selected location on a grid, but to 

a distinct characterization of the tan θ. 
 

The very essence of this algorithm, therefore, lies in the 

fact that it perceives the given Parabolic Curve from 

different elevations or perspectives that intersect it at 

respective pairs of locations, termed root sets, each of 

which is described by a unique suite of trigonometric 

solutions which all, nevertheless, assume the form of the 

General Parabolic Function: 

y  c bx  ax 2 =++  
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The algorithm for establishing Parabolic Curve Mapping 

relies upon certain quintessential elements, or properties 

of Parabolic Functions as denoted below (Ref. Figure 13): 

• yM depicts a vertical offset from the low point (or 

high point) of the given Parabolic Curve to any other 

arbitrarily selected height elevation, or latitude.  

Most importantly, it represents a curve characteristic 

that can be easily identified and measured, and 

therefore qualifies as a parabolic curve property 

• x1 and x2 represent distinct roots for the Parabolic 

Curve relative to any arbitrarily selected value of yM.  

They occur at parabolic curve intersection points with 

a horizontal line which is drawn through the end of 

the yM offset which is not connected to the parabolic 

curve’s low point 

• The origin is a point selected upon this horizontal 

projection which connects x1 to x2.  Most importantly, 

for the particular origin specified, x1 and x2 
represent respective distances away from the origin. 

• x1-x2 identifies the distance between roots x1 and x2.  

It also may be viewed as the horizontal length between 

Parabolic Curve intersection points at any arbitrarily 

selected height yM above the curve’s low point (or 

below it high point).  In this case, +x1 signifies a 

root which is located to the right of the origin and –

x2 signifies a root located to the left of the y-axis.  

As a measurable feature, 21  x- x  also must be listed as a 

Parabolic Curve property 

• x , as specified below reflects a symmetrical aspect of 

the given Parabolic Curve.  This is easily verified by 

its defining function ax2 = y such that: 

a

y
x ±=  

This above equation constitutes dual quantities 

of x for every value of y postulated, located 

identical distances to the left and to the right 

from the centerline of the curve, respectively – 

which designates symmetry. 

Above, the term x  is used to denote a horizontal 

distance which runs from any point on the 

parabolic curve to the centerline of that curve, 

as represented by an imaginary line which runs 

vertically through point O. 
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Accordingly, 

Myxay −== 2)(  

Now, going back to Figure 13, a typical Parabolic Curve is 

represented whose low point is located at a distance, or 

coordinate xM and yM, respectively from the origin.  In this 

case, both xM and yM are to be considered as negative 

quantities since they are measured to the low point of the 

Parabolic Curve, which lies both to the left and below the 

specified origin. 

 

Because of this symmetry, x  must be equal to one-half of 

the property ) x (x 21 − .  However, from Figure 13, it is shown 

that such length also is equal to x1 – xM (with xM 

designated as a negative quantity).  Accordingly, 

)  x-½(x    x-x 21M1 =  

21M1   x- x 2x -2x =  

) x (x-  2x- 21M +=  

Or, 

) x ½(x  x 21M +=  

Where it was determined that: 

a

b
xM

2
−=  (Ref. Section 14.1.1) 

So, 

a

b

2
) x ½(x 21 −=+  

b−=+ ) x a(x 21  

Or, 

) x a(x -b 21 +=  

Furthermore, from: 

2)(xayy M =−=  

221 )
2

 x-x
(a=  

But, earlier it was determined that: 

acyM 4/b 2−= ) 

cayM =+ 4/b 2
 

caa =+− 4/b )
2

 x-x
( 2221  
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As such, 

a

b
ac

4
)

2

 x-x
(

2
221 +−=  

a

xxa
a

4

)]([
)

2

 x-x
(

2

21221 +−
+−=  

)xxx2xxxx2x(
4

2

221

2

1

2

221

2

1 +++−+−=
a

 

21xxa=  

To summarize, the coefficients b and c now both have become 

postulated in terms of x1 and x2 as follows: 

• ) x a(x -b 21 +=  

• 21xxac =  

Check: 

01

2

1 =++ cbxax  

0)( 21121

2

1 =++− xaxxxxaax  

02121

2

1

2

1 =+−− xxxxxx  

00 =  

02

2

2 =++ cbxax  

0)( 21221

2

2 =++− xaxxxxaax  

021

2

221

2

2 =+−− xxxxxx  

00 =  Q.E.D. 

Now further suppose that xM and yM are selected in such as 

manner that the origin is placed at a position, relative to 

the low point on the Parabolic Curve where distances 

measured horizontally from this origin to intersection 

points on the curve are as follows: 

• θtan1 =x  

• )2tan(/12 θ−=x  

Such selection is merely arbitrary.  That is, it meets the needs of this analysis by allowing 

efficient computation, but in no way represents the only selection that could be adopted. 

Then at, 

) x a(x -b 21 +=  

]
)2tan(

1
[tan

θ
θ −−= a  

)
tan2

tan1
(tan

2

θ

θ
θ

−
−−= a  

)
tan2

tan31
(

2

θ

θ−
= a  

21xxac =  

]
)2tan(

1
[tan

θ
θ

−
= a  

)
tan2

tan1
(tan

2

θ

θ
θ

−
−= a  

)1(tan
2

2 −= θ
a
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Check: 

01

2

1 =++ cbxax  

0)1(tan
2

tan)
tan2

tan31
(tan 2

2
2 =−+

−
+ θθ

θ

θ
θ

a
aa  

0
2

1

2

tan
tan

2

3

2

1
tan

2
22 =−+−+

θ
θθ  

0
2

1
tan

2

3

2

1
tan

2

3 22 =−−+ θθ  

00 =  

02

2

2 =++ cbxax  

0)1(tan
2

]
)2tan(

1
)[

tan2

tan31
(]

)2tan(

1
[ 2

2
2 =−+−

−
+− θ

θθ

θ

θ

a
aa  

0)1(tan
2

)
tan2

1tan
)(

tan2

tan31
()

tan2

1tan
( 2

22
2

2

=−+
−−

+
−

θ
θ

θ

θ

θ

θ

θ a
aa  

0
tan4

tan2tan2
)

tan4

tan3tan31tan
()

tan4

1tan2tan
(

2

24

2

242

2

24

=
−

+
+−−

+
+−

θ

θθ

θ

θθθ

θ

θθ
 

0tan2tan2tan3tan31tan1tan2tan 2424224 =−++−−++− θθθθθθθ  

0tan31tan41tan4tan3 4224 =−−++− θθθθ  

00 =  

In conclusion the coefficients for the equation y  c bx  ax 2 =++  

are determined to be as follows: 

• )
tan2

tan31
(

2

θ

θ−
= ab  

• )1(tan
2

2 −= θ
a

c  

By setting x1 and x2 as follows, a distinct point B becomes 

located (Ref. Figure 13) which resides somewhere on the 

horizontal line which connects these above stated roots: 

• θtan1 =x  

• )2tan(/12 θ−=x  

Now if it is desired to perform an analysis with regard to 

another location on this horizontal line besides point B, 

then the end conditions specified above simply do not 

apply.  This issue is handled as follows: 

Where the two roots to a Parabolic Equation are 

represented as, 

0))(( 21 =−− xxxx  

0)( 2121

2 =++− xxxxxx  

But, 
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02 =++ cbxax  

02 =++
a

c
x

a

b
x , which leads to )( 21 xx

a

b
+−=  

Then, for: 

• θtan1 =x  

• )2tan(/12 θ−=x  

)( 21 xx
a

b
+−=  

]
)2tan(

1
[tan

θ
θ −−=  

)
tan2

tan1
(tan

2

θ

θ
θ

−
−−=  

)
tan2

1tan3
(

2

θ

θ −
−=  

θ

θ

tan2

tan31 2−
=  

ζ

θ

2

tan3 2−
=  

• θtan1 =x  

• θtan/12 −=x  

)( 21 xx
a

b
+−=  

)tan/1(tan θθ −−=  

θ
θ

tan

1
tan +−=  

θ

θ

tan

tan1 2−
=  

• θtan1 =x  

• )2tan(2 θ−=x  

)( 21 xx
a

b
+−=  

)]2tan([tan θθ −−=  

θ

θ
θ

2tan1

tan2
tan

−
+−=  

θ

θθ
2

3

tan1

tantan

−

+
=  

θ

ζθθ
2tan1

tan31(tan3tan

−

−−+
=

θ

θζθ
2

2

tan1

)tan31(tan4

−

−−
=  

Moreover,  

)( 21 xx
a

b
+−= : 

)( 12
a

b
xx +−=  

Or, 

a

b
xx +=− 12  

Using this formula, -x2 then may be calculated using the 

coefficients afforded in any given Parabolic Equation.  

This will enable resolution for any intermediate point 

located on the horizontal line which joins root x1 to x2. 

Hence, determination of the proper term which should be 

applied to the x2 root of any given Parabolic Equation is 

based upon the factor b/a, hereinafter to be identified as 

the Selectivity Coefficient Ratio. 
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14.1.3.  Application. 

Table 18 lists Essential Algorithmic Relationships xM and yM 

for the specific condition when θtan1 =x  and )2tan(/12 θ−=x  when 

eighteen values of θ ranging from 5o to 85o in 5 degree 
increments and a value for θ of 83.0175o become applied. 
 

Notice that all rows of its third column display the same 

arbitrarily assigned 3  a =  coefficient value.  From this, 

values of coefficients b and c are easily calculated as 

indicated in the two following sample cases: 

1) For 30.08748866  5tan o = , 

75137947.16]
)08748866.0(2

)08748866.0(31
[3)

tan2

tan31
(

22

=
−

=
−

=
θ

θ
ab (Ref. above table) 

488518601.1]1)087488663.0[(
2

3
)1(tan

2

22 −=−=−= θ
a

c  

2) For 12.14450692  65tan o = : 

950819655.8]
)144506921.2(2

)144506921.2(31
[3)

tan2

tan31
(

22

−=
−

=
−

=
θ

θ
ab  

398364898.5]1)144506921.2(
2

3
)1(tan

2

22 =−=−= θ
a

c  

The roots x1 and x2, along with values of xM and yM are 

established by applying respective equations listed at the 

top of Table 18. 

 

For x = -12 and 12.14450692  65tan o = : 

85.39836489  655)(-12)(-8.950819  3(-12)  c bx   ax 22 ++=++  

8544.808200 =  
y =
 

Figure 15Figure 15 illustrates a family of eighteen resultant 

curves that each are associated with the eighteen 

respective rows of θ and tan θ values appearing in Table 18 
such that: 

• Its abscissa, or x-axis, displays x values where the 

subject curves are continuously charted between 

1515 +≤≤− x  

• Its ordinate, or y-axis, displays values which 

characterize the sum of left-hand terms for the 

Parabolic Function y  c bx  ax 2 =++  

Table 19 renders a tabulation of its plot points where two 

specific calculations are afforded below for respective b 

and c coefficient values which were determined above: 
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1) For x = 15 and 30.08748866  5tan o = , 

1.4885186- 47)(15)(16.751379  3(15)  c bx   ax 22 +=++  

1.4885186- 1251.270692  675 +=  

924.782173 =  
y =  
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Table 18.  Essential Algorithmic Relationships. 

 

a, b, and c COEFFICIENTS 
QUADRATIC ROOTS 

ARBITRARY 
ANGLES TANGENTS 

COEFFICIENT 
)

tan2

tan31
(

2

θ

θ−
= ab  )1(tan

2

2 −= θ
a

c  
aacbbxx 2/]4[, 2

21 −±−=  

a

b
xM

2
−=  cbxaxy MMM ++=

2
 

Θ (Deg) tan θ a b c x1 x2 xM yM 

5 0.08748866 3 16.75137947 -1.488518601 0.087488663 -5.67128182 -2.791896578 -24.87257811 

10 0.17632698 3 7.713451316 -1.453363194 0.176326981 -2.74747742 -1.285575219 -6.411474128 

15 0.26794919 3 4.392304845 -1.392304845 0.267949192 -1.73205081 -0.732050808 -3 

20 0.36397023 3 2.483350075 -1.301288503 0.363970234 -1.19175359 -0.413891679 -1.815207469 

25 0.46630766 3 1.118375919 -1.173835752 0.466307658 -0.83909963 -0.186395987 -1.278066143 

30 0.57735027 3 0 -1 0.577350269 -0.57735027 0 -1 

35 0.70020754 3 -1.00871191 -0.764564105 0.700207538 -0.36397023 0.168118652 -0.849355749 

40 0.83909963 3 -1.98831795 -0.443867713 0.839099631 -0.17632698 0.331386325 -0.773318403 

45 1 3 -3 -3.33067E-16 1 -7.4015E-17 0.5 -0.75 

50 1.19175359 3 -4.10424172 0.630414938 1.191753593 0.176326981 0.684040287 -0.773318403 

55 1.42814801 3 -5.37635472 1.559410094 1.428148007 0.363970234 0.896059121 -0.849355749 

60 1.73205081 3 -6.92820323 3 1.732050808 0.577350269 1.154700538 -1 

65 2.14450692 3 -8.95081966 5.398364898 2.144506921 0.839099631 1.491803276 -1.278066143 

70 2.74747742 3 -11.817693 9.822948256 2.747477419 1.191753593 1.969615506 -1.815207469 

75 3.73205081 3 -16.3923048 19.39230485 3.732050808 1.732050808 2.732050808 -3 

80 5.67128182 3 -25.2562777 46.74515622 5.67128182 2.747477419 4.20937962 -6.411474128 

83.0175 8.16496581 3 -36.5586344 98.4999999 8.164965807 4.02124566 6.093105733 -12.87781249 

85 11.4300523 3 -51.3040024 194.4691435 11.4300523 5.67128182 8.550667061 -24.87257811 
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2) For x = -12 and 12.14450692  65tan o = : 

85.39836489  655)(-12)(-8.950819  3(-12)  c bx   ax 22 ++=++  

8544.808200 =  

y =  

Figure 15.  Eighteen Identical Curves Belonging to the Family 3x2 = y. 

 
For Table 19, again, values of x range from -15 to +15 in 

increments of one unit.  Based upon page limitations, two 

pages are necessary to portray this range.  Furthermore, 

the first set of pages lists the tan 5o to tan 45o values, 

while the second set covers tan 50o thru 85o, inclusively. 
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Table 19.  Tabulation for Figure 15.  

y  c bx  ax 2 =++  plot values x plot  

values tan 5
o
 tan 10

o
 tan 15

o
 tan 20

o
 tan 25

o
 tan 30

o
 tan 35

o
 tan 40

o
 tan 45

o
 

15 924.782173 789.2484065 739.4922678 710.9489626 690.601803 674 659.1047572 644.731363 630 

14 821.030794 694.5349552 648.099963 621.4656125 602.4834271 587 573.1134691 559.719681 546 

13 723.279415 605.8215039 562.7076581 537.9822625 520.3650512 506 493.122181 480.7079989 468 

12 631.528035 523.1080526 483.3153533 460.4989124 444.2466753 431 419.130893 407.6963169 396 

11 545.776656 446.3946013 409.9230485 389.0155623 374.1282994 362 351.1396049 340.6846348 330 

10 466.025276 375.68115 342.5307436 323.5322122 310.0099234 299 289.1483168 279.6729528 270 

9 392.273897 310.9676987 281.1384388 264.0488622 251.8915475 242 233.1570287 224.6612707 216 

8 324.522517 252.2542473 225.7461339 210.5655121 199.7731716 191 183.1657406 175.6495887 168 

7 262.771138 199.540796 176.3538291 163.082162 153.6547957 146 139.1744525 132.6379066 126 

6 207.019758 152.8273447 132.9615242 121.5988119 113.5364198 107 101.1831644 95.62622458 90 

5 157.268379 112.1138934 95.56921938 86.11546187 79.41804384 74 69.19187634 64.61454253 60 

4 113.516999 77.40044207 64.17691454 56.6321118 51.29966792 47 43.20058825 39.60286048 36 

3 75.7656198 48.68699075 38.78460969 33.14876172 29.18129201 26 23.20930016 20.59117843 18 

2 44.0142403 25.97353944 19.39230485 15.66541165 13.06291609 11 9.218012071 7.579496385 6 

1 18.2628609 9.260088122 6 4.182061572 2.944540167 2 1.226723983 0.567814336 0 

0 -1.4885186 -1.453363194 -1.39230485 -1.301288503 -1.173835752 -1 -0.764564105 -0.443867713 0 

-1 -15.239898 -6.16681451 -2.78460969 -0.784638578 0.707788329 2 3.244147807 4.544450238 6 

-2 -22.991278 -4.880265826 1.823085465 5.732011347 8.58941241 11 13.25285972 15.53276819 18 

-3 -24.742657 2.406282858 12.43078062 18.24866127 22.47103649 26 29.26157163 32.52108614 36 

-4 -20.494036 15.69283154 29.03847578 36.7653112 42.35266057 47 51.27028354 55.50940409 60 

-5 -10.245416 34.97938023 51.64617093 61.28196112 68.23428465 74 79.27899546 84.49772204 90 

-6 6.00320458 60.26592891 80.25386609 91.79861105 100.1159087 107 113.2877074 119.48604 126 

-7 28.2518251 91.55247759 114.8615612 128.315261 137.9975328 146 153.2964193 160.4743579 168 

-8 56.5004456 128.8390263 155.4692564 170.8319109 181.8791569 191 199.3051312 207.4626759 216 

-9 9.7490662 172.125575 202.0769516 219.3485608 231.760781 242 251.3138431 260.4509938 270 

-10 130.997687 221.4121236 254.6846467 273.8652107 287.6424051 299 309.322555 319.4393118 330 

-11 177.246307 276.6986723 313.2923419 334.3818607 349.5240291 362 373.3312669 384.4276297 396 

-12 229.494928 337.985221 377.900037 400.8985106 417.4056532 431 443.3399788 455.4159477 468 

-13 287.743548 405.2717697 448.5077322 473.4151605 491.2872773 506 519.3486908 532.4042657 546 

-14 351.992169 478.5583184 525.1154273 551.9318104 571.1689014 587 601.3574027 615.3925836 630 

-15 422.240789 557.8448671 607.7231225 636.4484604 657.0505255 674 689.3661146 704.3809016 720 
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y  c bx  ax 2 =++  y plot values x plot  

values tan 50
o
 tan 55

o
 tan 60

o
 tan 65

o
 tan 70

o
 tan 75

o
 tan 80

o
 tan 83.01750271

o
 tan 85

o
 

15 614.0667891 595.9140892 574.0769516 546.1360701 507.5575527 448.5077321 342.9009904 224.8204839 99.90910795 

14 531.1710309 514.290444 494.0051548 468.0868897 432.3752457 377.900037 281.1572681 174.3791183 64.21311032 

13 454.2752726 438.6667987 419.933358 396.0377094 363.1929387 313.2923418 225.4135459 129.9377527 34.51711269 

12 383.3795143 369.0431534 351.8615612 329.988529 300.0106318 254.6846467 175.6698236 91.49638714 10.82111506 

11 318.483756 305.4195081 289.7897645 269.9393487 242.8283248 202.0769515 131.9261013 59.05502154 -6.87488257 

10 259.5879977 247.7958629 233.7179677 215.8901683 191.6460179 155.4692564 94.18237902 32.61365594 -18.5708802 

9 206.6922395 196.1722176 183.6461709 167.840988 146.4637109 114.8615612 62.43865674 12.17229034 -24.26687783 

8 159.7964812 150.5485723 139.5743742 125.7918077 107.2814039 80.25386605 36.69493446 -2.26907526 -23.96287546 

7 118.9007229 110.924927 101.5025774 89.74262731 74.09909698 51.6461709 16.95121218 -10.71044086 -17.65887309 

6 84.00496462 77.30128176 69.43078062 59.69344697 46.91679002 29.03847575 3.2074899 -13.15180646 -5.35487072 

5 55.10920634 49.67763648 43.35898385 35.64426662 25.73448306 12.4307806 -4.53623238 -9.59317206 12.94913165 

4 32.21344806 28.0539912 23.28718708 17.59508628 10.5521761 1.82308545 -6.27995466 -0.03453766 37.25313402 

3 15.31768978 12.43034593 9.21539031 5.545905933 1.369869136 -2.7846097 -2.02367694 15.52409674 67.55713639 

2 4.421931498 2.806700648 1.14359354 -0.503274412 -1.812437824 -1.39230485 8.23260078 37.08273114 103.8611388 

1 -0.473826782 -0.816944629 -0.92820323 -0.552454757 1.005255216 6 24.4888785 64.64136554 146.1651411 

0 0.630414938 1.559410094 3 5.398364898 9.822948256 19.39230485 46.74515622 98.19999994 194.4691435 

-1 7.734656658 9.935764817 12.92820323 17.34918455 24.6406413 38.7846097 75.00143394 137.7586343 248.7731459 

-2 20.83889838 24.31211954 28.85640646 35.30000421 45.45833434 64.17691455 109.2577117 183.3172687 309.0771482 

-3 39.9431401 44.68847426 50.78460969 59.25082386 72.27602738 95.5692194 149.5139894 234.8759031 375.3811506 

-4 65.04738182 71.06482899 78.71281292 89.20164352 105.0937204 132.9615243 195.7702671 292.4345375 447.685153 

-5 96.15162354 103.4411837 112.6410162 125.1524632 143.9114135 176.3538291 248.0265448 355.9931719 525.9891554 

-6 133.2558653 141.8175384 152.5692194 167.1032828 188.7291065 225.746134 306.2828225 425.5518063 610.2931577 

-7 176.360107 186.1938932 198.4974226 215.0541025 239.5467995 281.1384388 370.5391003 501.1104407 700.5971601 

-8 225.4643487 236.5702479 250.4256258 269.0049221 296.3644926 342.5307437 440.795378 582.6690751 796.9011625 

-9 280.5685904 292.9466026 308.3538291 328.9557418 359.1821856 409.9230485 517.0516557 670.2277095 899.2051648 

-10 341.6728321 355.3229573 372.2820323 394.9065614 427.9998787 483.3153534 599.3079334 763.7863439 1007.509167 

-11 408.7770739 423.699312 442.2102355 466.8573811 502.8175717 562.7076582 687.5642111 863.3449783 1121.81317 

-12 481.8813156 498.0756668 518.1384388 544.8082008 583.6352647 648.0999631 781.8204889 968.9036127 1242.117172 

-13 560.9855573 578.4520215 600.066642 628.7590204 670.4529578 739.4922679 882.0767666 1080.462247 1368.421174 

-14 646.089799 664.8283762 687.9948452 718.7098401 763.2706508 836.8845728 988.3330443 1198.020882 1500.725177 

-15 737.1940407 757.2047309 781.9230485 814.6606597 862.0883439 940.2768776 1100.589322 1321.579516 1639.029179 
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Notice that the first y entry given in Table 19 displays a 

value of 924.782173, just as computed above. Secondly, Table 

19 returns a y entry value of 8544.808200  for the condition 

when x = -12 and  65tan o ; just as determined above. 

 

The intention of Figure 16 is to show that all curves 

displayed in Figure 15 are identical by virtue of the fact 

that each curve each can be translated to a new location 

such that it entirely superimposes upon or overlaps the 

others. 

Figure 16.  The Collapsing of Eighteen Curves Represented in Figure 15. 
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This is demonstrated through a step function derived as 

follows: 

yccxxaxxbbxbxax MMMM =−+−+−+−+ )]()()()[(
222  

yccxxaxxbxaxbxax MMMMM =−+−+−+++ )()()()2(
222  

ycbxaxcxxbxxxxa MMMMM =++−+++++ )()()2(
222  

yycxxbxxa MMM =−++++ )()()( 2  

Such derivation indicates that the Parabolic Curve yax =2
 

can be precisely mapped by an alternate step function 

yycxxbxxa MMM =−++++ )()()( 2
, hereinafter termed the 

Normalization Transformation for Parabolic Functions, 

which: 

• Is comprised of Mxxx +='  terms and: 

• Exhibits the same format as the Parabolic Function 

y  c' bx'  ax'2 =++  where, 

Mycc −='  

Table 20 presents the tabulation for Figure 16.  Notice 

that for each row presented, all columns return the same 

exact respective values for y. 

 

Such overall identity is obtained by applying the 

Normalization Transformation for Parabolic Functions to 

each of the eighteen curves illustrated Figure 15.  As 

such, Table 20 ordinate entries may be obtained in either 

one of two ways as listed below: 

1) Table 18 values, may be inserted into the 
Normalization Transformation for Parabolic Functions 

for each and every specified θ value.  Missing entries 
can be added using the method previously described 

above.  For example, since 
o4=θ  does not appear in 

Table 18, it may be added to it, such that: 

For 10.06992681  4tan o = , 

13632873.21]
)10.06992681(2

)10.06992681(31
[3)

tan2

tan31
(

22

=
−

=
−

=
θ

θ
ab  

492265361.1]1)10.06992681 [(
2

3
)1(tan

2

22 −=−=−= θ
a

c  

522721455.3
)3(2

13632873.21

2
−=−=−=

a

b
xM  

72096471.38
2

−=++= cbxaxy MMM  
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yycxxbxxa MMM =−++++ )()()( 2  

y=−−−+− )72096471.38492265361.1()522721455.34(13632873.21)522721455.34(3 2  

4822869935.3708791622.10683384429.0 =++  

2) Normalization Transformation for Parabolic Functions 
entries can be ascertained by adding calculated values 

specified below to respective Table 19 entries as 

follows: 

Where, 

y  c bx  ax 2 =++  [Ref. Table 19] 

yycxxbxxa MMM =−++++ )()()( 2
 [Ref. Table 20] 

yycxxbxxxxa MMMM =−+++++ )()2(
22  

yybxaxxaxcbxax MMMM =−+++++ )2()(
22  

Three sets of calculations to determine Table 20 

ordinate values are shown below based upon Table 19 

entries: 

• For the Table 19 entry x = 15 and 
o5tan , 

yybxaxxaxcbxax MMMM =−+++++ )2()(
22  

y=++++ 1]24.872578178)-2.7918965(716.751379478)-2.7918965(378)(15)-2.7918965)(3(2[924.782173 2  

y=+−+−+ )87257811.2476811902.4638405951.23270692.251(924.782173  

675782173.249924.782173 =−  

• For the Table 19 entry x = 15 and 
o15tan , 

yybxaxxaxcbxax MMMM =−+++++ )2()(
22  

y=++++ 3]08)-0.7320508(54.3923048408)-0.7320508(308)(15)-0.7320508)(3(2[8739.492267 2  

y=+−+−+ )3215390311.3607695156.18845727.65(8739.492267  

6754922678.648739.492267 =−  

• For the Table 19 entry x = -12 and  65tan o
, 

yybxaxxaxcbxax MMMM =−+++++ )2()(
22  

y=+++ 3]1.278066146)1.49180327(8.95081966-6)1.49180327(36)(-12)1.49180327)(3(2[8544.808200 2  

4328082008.1128544.808200 =−  
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Table 20.  Tabulation for Figure 16.  

yycxxbxxa MMM =−++++ )()( 2  Plot Values for the Following Curves 
X plot  

values tan 

5
o
 

tan 

10
o
 

tan 

15
o
 

tan 

20
o
 

 tan 

25
o
 

tan 

30
o
 

tan 

35
o
 

tan 

40
o
 

tan 

45
o
 

tan 

50
o
 

tan 

55
o
 

tan 

60
o
 

tan 

65
o
 

 tan 

70
o
 

 tan 

75
o
 

tan 

80
o
 

tan 

83.01750271
o
 

tan 

85
o
 

15 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 

14 588 588 588 588 588 588 588 588 588 588 588 588 588 588 588 588 588 588 

13 507 507 507 507 507 507 507 507 507 507 507 507 507 507 507 507 507 507 

12 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 

11 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 

10 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 

9 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 

8 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 

7 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 

6 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 

5 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 

4 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 

3 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 

2 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

-2 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

-3 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 

-4 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 

-5 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 

-6 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 

-7 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 

-8 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 

-9 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 

-10 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 

-11 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 

-12 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 

-13 507 507 507 507 507 507 507 507 507 507 507 507 507 507 507 507 507 507 

-14 588 588 588 588 588 588 588 588 588 588 588 588 588 588 588 588 588 588 

-15 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 
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Algorithmic relationships expressed in Table 18 are applied 

in the following example, where: 

a) It is desired to plot a Parabolic Curve of the form ycbxx =++23  which is 

identical in shape to the curve yx =− 2003 2 ,  possesses its very same x1 root, 

and has low point coordinates as follows: 

56.09310573=Mx  

5-12.877812=My  

b) It is desired to plot a second  Parabolic Curve of the form ycbxax =++2  which 

is identical in shape to the curve yx =− 2003 2 , possesses its very same x1 root, 

but exhibits another low point that is different than 56.09310573=Mx  and 

5-12.877812=My  

Solution: 

a) The roots of the given curve yx =− 2003 2
 are determined 

at 0 y =  as, 

02003 2 =−x  

3

200
; 21 ±== xxx  

164965809.8±=  

For the desired equation ycxbax =++ 11

2
 

56.09310573
2

1
1 =−=−

a

b
xM  

5735(a)6.0931021 −=b  

5735(3)6.093102−=  

55863441.36−=  

5-12.877812111

2

11
=++=

−−−
cxbaxy MMM  

)(5-12.877812 11

2

11 −− +−= MM xbaxc  

] 735)1(6.09310536.5586344-735)3(6.093105 [8778125.12  2−−=  

 222.755625 5111.3778128778125.12 +−−=  

 5.98=  

Results: 

• yx =− 2003 2
 

• yx =+ 98.51x36.5586344-3 2
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b) Now letting: 

o
x 01750271.83tan164965809.8

3

200
tan1 =+=+== θ  

ox )01750271.83(2tan)2tan(2 −=−= θ  
o0350054.166tan−=  

248679161.0=  

Then for the second desired equation ycxbax =++ 22

2
 

21
2 xx

a

c
=  (Ref. earlier table Section 14.1.2) 

 

212 xaxc =  

)248679161.0(
3

200
3=  

091370558.6=  

θ

θθ
2

3

2

tan1

tantan

−

+
=

a

b
 (Ref. later table Section 14.1.2) 

)

3

200
1

3

200

3

200

3

200

(32

−

+

=b  

)
2003

2003
(

3

200
3

−

+
=  

)
197

203
(

3

200
3−=  

24093491.25−=  

Then, 

yxx =+− 091370558.624093491.253 2
 

For this equation: 

206822486.4
6

24093491.52

2

2
2 ==−=−

a

b
xM  

091370558.6)206822486.4(24093491.25)206822486.4(3)( 2

222

2

22 +−=++= −−− cxbxay MMM  

0006957.47−=  
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Figure 17 charts these curves in relationship to their 

yx =23  Parent Function.  Notice the low point of the Parent 

Function lies directly upon the origin.  Furthermore, the 

three other curves itemized above intersect at a shared 

root value of x1 equals +8.164965809.  The curve yx =− 2003 2
 

resides directly below the Parent Function by a 

displacement of 200 units. 

 

Figure 18 demonstrates the four curves to be of identical 

shape because the three resulting curves collapse upon 

their Parent Curve once the proper translation 

relationships are applied.  This is easily confirmed, 

therein, since respective equation y values are exactly the 

same for each and every entry of x. 

 

In this case, an example calculation for the following two 

equation when x equals a minus five is given below: 

yycxxbxx MMM =−++++ −−− 1111

2

1 )()(3  

yb =+++−++− 12.87781255.98)56.093105735()56.093105735(3 1

2
 

y=++ 12.87781255.98).0931057351(136.5586344-).0931057351(3 2
 

y=++ 12.87781255.98.9624529493-.5846404443  

y=75  

yycxxbxx MMM =−++++ −−− 2122

2

2 )()(3  

yb =+++−++− 0006957.74091370558.6)206822486.45()206822486.45(3 2

2
 

y=++−− 0006957.74091370558.6)793177514.0(125.2409349-)793177514.0(3 2
 

y=+++ 0006957.74091370558.620.020542.8873917061  

y=75  
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Figure 17.  Plot of Four Identical Parabolic Curves with 3x2 = y Low Point Located at Origin. 

 

Y plot Values X plot 

Values yx =23   yx =+ 98.51x36.5586344-3 2  yxx =+− 091370558.624093491.253 2  

11 363 163 59.35502149 91.44108654 

10 300 100 32.9136559 53.68202145 

9 243 43 12.47229031 21.92295636 

8 192 -8 -1.96907528 -3.836108732 

7 147 -53 -10.41044087 -23.59517382 

6 108 -92 -12.85180646 -37.35423891 

5 75 -125 -9.29317205 -45.113304 

4 48 -152 0.26546236 -46.87236909 

3 27 -173 15.82409677 -42.63143418 

2 12 -188 37.38273118 -32.39049927 

1 3 -197 64.94136559 -16.14956436 

0 0 -200 98.5 6.091370548 

-1 3 -197 138.0586344 34.33230546 

-2 12 -188 183.6172688 68.57324037 

-3 27 -173 235.1759032 108.8141753 

-4 48 -152 292.7345376 155.0551102 

-5 75 -125 356.2931721 207.2960451 

-6 108 -92 425.8518065 265.53698 

-7 147 -53 501.4104409 329.7779149 

-8 192 -8 582.9690753 400.0188498 

-9 243 43 670.5277097 476.2597847 

-10 300 100 764.0863441 558.5007196 

-11 363 163 863.6449785 646.7416546  
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Figure 18.  Plot of Four Identical Parabolic Curves Collapsing upon the Parent 3x2 = y Curve. 

Where, 

56.093105731 == −MM xx  

5-12.877812
1

==
−MM yy  

55863441.361 −=b  

 5.981 =c  

206822486.42 =−Mx  

0006957.472 −=−My  

24093491.252 −=b  

091370558.62 =c  

Y plot Values X plot 

Values yx =23  yx =+− 200)2003( 2  yycxxbxx MMM =−++++ −−− 1111

2

1 )()(3  yycxxbxx MMM =−++++ −−− 2122

2

2 )()(3  

11 363 363 363 363 

10 300 300 300 300 

9 243 243 243 243 

8 192 192 192 192 

7 147 147 147 147 

6 108 108 108 108 

5 75 75 75 75 

4 48 48 48 48 

3 27 27 27 27 

2 12 12 12 12 

1 3 3 3 3 

0 0 0 0 0 

-1 3 3 3 3 

-2 12 12 12 12 

-3 27 27 27 27 

-4 48 48 48 48 

-5 75 75 75 75 

-6 108 108 108 108 

-7 147 147 147 147 

-8 192 192 192 192 

-9 243 243 243 243 

-10 300 300 300 300 

-11 363 363 363 363  
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In summary, the following steps should be taken to ascertain 

coefficients which belong to a Parabolic Function of the form 

ycbxax =++2
 that characterizes any constructed Parabolic Curve 

whose low point resides at a given location relative to any 

arbitrarily specified origin: 

1) First, in order to verify the given curve belongs to the 
family ax2 = y, a plot of the curve is to be generated 

with respect to its low point. 

As such, each measured y value represents the 

vertical measurement from the low point of the curve 

to a relative elevation, or latitude of any other 

point which resides upon the curve. 

Likewise, each measured x value then represents the 

horizontal distance measured from the low point of 

the curve to a vertical projection of the same 

respective other point previously identified above. 

Then such y measurement is to be divided by the square of 

its respective x measurement in order to determine a 

value for the coefficient a.  If the results for all sets 

of x and y values are the same, then the curve is 

Parabolic. 

2) From xM, the horizontal distance measured from any 
arbitrarily specified origin to the vertical projection 

of the low point on the given curve, the coefficient b is 

calculated as follows: 

Maxb 2−=  

3) From yM, the vertical distance measured from the 
arbitrarily specified origin to the horizontal projection 

of low point on the given curve, the coefficient c is 

calculated as follows: 

MMM bxaxyc −−=
2
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A simple example for this approach follows: 

It is desired to find the ycbxax =++2
 Parabolic Function 

for a curve whose locus of points is represented as 

follows for an origin which is located 14 units to the 

right and 12 units above the given curve’s low point: 

x y aCALC = y/x
2
 

1.2 25.2 17.5 

2.5 109.375 17.5 

2.5 109.375 17.5 

4.4 338.8 17.5 

5 437.5 17.5 

Solution: 

1) Since all of the values in the right column equal 
17.5, then the given graph identifies parabolic 

coordinates. 

2) 490)14)(5.17(22 =−−=−= Maxb  

3) 418,3)14(490)14)(5.17(12 22
=−−−−−=−−= MMM bxaxyc  

Or, 

yxx =++ 418,34905.17 2
 

14.2.  Generalized Cubic Curve Mapping. 

Figure 19 shows a typical Generalized Cubic Curve.  It may be 

represented either as a sketch, or a plot of points on a graph 

since the latter may be developed from the former; and vice 

versa.  However, when represented as a plot of points on a 

graph, plot values are dependent upon where the origin is 

placed at. The notations zR, zS, and zT denote respective roots 

for any arbitrarily selected origin. 

More specifically, Figure 19 applies only to curve families 

which satisfy all constraints imposed upon them by the 

Generalized Cubic Function (Ref. Equation 32): 

αα

δ

α

γ

α

β y
zzz =+++ 23

 

Or, 

DTRANSFORMEyzzz =+++ ''' 23 δγβ  
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Figure 19.  The Generalized Cubic Function. 

 

14.2.1.  Singularity Proof. 

The proof presented below is converse to that presented in 

Section 14.1.1 since it moves from the Generalized Cubic 

Function, or family curve, to its Parent Curve, ''' 23 yzz =+σ . 

So, where: 

DTRANSFORMEyzzz =+++ ''' 23 δγβ  

The first derivative of the curve is: 

dydzdzzdzz =++ ')'2(3 2 γβ  

This applies to identifiable locations ‘A’ and ‘B’ on the curve 

presented in Figure 19 where the slope equals zero, as follows: 

0/''23 2 ==++ dzdyzz γβ  

After multiplying thru by a factor of 1/3, rearranging terms, 

and finally Completing the Square, this equates to: 

3

'
'

3

22 γ
β −=+ zz  

222 )'
3

1
()

3

3
(

3

'
)'

3

1
('

3

2
β

γ
ββ +−=++ zz  

9

'

9

'3
)'

3

1
(

2
2 βγ

β +−=+z  

]'3''[
3

1
, 2 γββ −±−=BA zz  
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For the Family Function noted above which possesses roots of zR, 

zS, and zT: 

DTRANSFORMEyzzz =+++ ''' 23 δγβ  

DTRANSFORMETSR yzzzzzz =−−− ))()((  

DTRANSFORMETSTSR yzzzzzzzz =++−− ])()[( 2
 

DTRANSFORMETSRTSTRSRTSR yzzzzzzzzzzzzzzz =−+++++− )()( 23
 

By comparing respective terms, the following identities are 

arrived at: 

• )(' TSR zzz ++−=β  

• TSTRSR zzzzzz ++='γ  

• TSR zzz−='δ  

Now consider a new, transformed y-axis (ref. Figure 19) 

hereinafter designated as y’ which vertically aligns with Point 

B such that horizontal offsets to the curve’s existing roots 

are relegated as: 

• BRR z  -z 'z =  

• BSS z  -z 'z =  

• BTT z  -z 'z =  

Accordingly, the transformed Cubic Function which employs such 

root structure is derived as follows: 

')'')('')(''( yzzzzzz TSR =−−−  

']''')''()[''( 2'
yzzzzzzzz TSTSR =++−−  

''''')''''''(')'''( 23'
yzzzzzzzzzzzzzzz TSRTSTRSRTSR =−+++++−  

''' 23 yzzz =+++ ντσ  

Such that, 

)'''( TSR zzz ++−=σ  

BTBSBR zzzzzz −+−+−−= (  

)3( BTSR zzzz −++−=  

Bz3'+= β  

)]'3''(
3

1
[3' 2 γβββ −−−+=  

)'3''' 2 γβββ −−−=  

'3'2 γβ −−=  

          '''''' TSTRSR zzzzzz ++=τ  
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)z-z)(z-z()z-z)(z-z()z-z)(z-z( BTBSBTBRBSBR ++=  

2

BTSTRSRBTSTRSR 3z)zzzzzz(z)zzzzzz( ++++++−++=  

2

BTSRBTSTRSR 3z)zzz(z2)zzzzzz( +++−++=  

2

BB 3zz'2' ++= βγ  

222 )]'3''(
3

1
[3)]'3''(

3

1
['2' γββγβββγ −−−+−−−+=  

)'3')'3''2'(
3

1
)'3''(

3

2
' 22222 γβγβββγβββγ −+−++−−−+=  

')'3''
3

2
'

3

2
)'3''(

3

2
' 2222 γγβββγβββγ −−++−−−+=  

)'3''
3

2
'

3

2
)'3''(

3

2 2222 γβββγβββ −++−−−=  

)'3''
3

2
)'3'

3

2 22 γββγββ −+−−=  

0=  

ν ''' TSR zzz−=  

)z-z)(z-z)(z-z( BTBSBR−=  

]z)zzz(-zz)[z-z(
2

BBTSTSBR ++−=  

3

B

2

BTSRBTSTRSRTSR zz)zzz(-)zzzzzzz(zzz ++++++−=  

3

B

2

BB zz'z'' +++= βγδ  

Notice that ν represents the function for Equation 32 once 
divided thru by α. 

Moreover, 

ν
3

B

2

BB zz'z'' +++= βγδ  

32222 )]'3''(
3

1
[)]'3''(

3

1
[')]'3''(

3

1
['' γββγβββγββγδ −−−+−−−+−−−+=  

Where, 

]'3''[
27

9 2 γββ −±−=Bz  

222
)]'3''(

3

1
[ γββ −−−=Bz  

]'3''3''2'[
27

3 222 γβγβββ −+−+=  

]'3'3''2'2[
27

3 22 γγβββ −−+=  

323
)]'3''(

3

1
[ γββ −−−=Bz  
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]'3'3''2'2]['3''[
27

1 222 γγβββγββ −−+−−−=  

]'3''3)'3'('2'3''2''3'3''2'2[
27

1 2222223 γβγγββγββγβγβββ −+−−−−+−−−=

]'3''3''6'2'3''2''3'3''2'2[
27

1 2322223 γβγγββγββγβγβββ −++−−−+−−−=  

]''9'3')'4'3('4[
27

1 223 γβγββγβ +−−+−=  

Then, 

ν
3

B

2

BB zz'z'' +++= βγδ  

]''9'3')'4'3('4)'3'3''2'2('3)'3''('9'27[
27

1 223222 γβγββγβγγββββγββγδ +−−+−−−++−−−+=

]'3')'4'3('4''9'3''6'6'3''9'27[
27

1 2232232 γββγβγβγβββγβγδ −−+−−−++−−=  

]'27''9'3')'6'2('2[
27

1 223 δγβγβγββ +−−−+=  

Therefore, 

'''' 23 yzzz =+++ ντσ  

''' 23 yzz =++ νσ  

']'2'3')'6'2(''9'27[
27

1
''3' 32222'3

yzz =+−−+−+−− βγβγβγβδγβ  

In order to prove singularity for the following two curves, it 

becomes necessary to validate that they’re identical. 

• DTRANSFORMEyzzz =+++ ''' 23 δγβ  

• ''' 23 yzz =++ νσ  

This is accomplished by showing that these two curves occupy 

identical points throughout their respective spans. 

 

Since both functions itemized above are general, such 

validation should apply to virtually any given cubic function. 

 

Again viewing Figure 19, it is easily verified that the roots 

zR, zS, and zT apply to an origin which resides at the 

intersection of the z-axis and y-axis.  All intermediate points 

on the curve satisfy the equation: 

DTRANSFORMEyzzz =+++ ''' 23 δγβ . 

Now, if this same curve were to be viewed from a new, 

translated origin which is placed at the intersection of the z-

axis, and the y’-axis, examination of Figure 19 discloses that 
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for any and all yTRANSFORMED values, a distinct value of z’ exists 

which is equal to the following: 

Bzzz −='  

Where, zB is considered to be negative. 

This viewpoint is reiterated via the following graph which 

gives a plot of the same curve, but from different relative 

origins: 

Table 21.  Curve Plot  Relative to Two Different Origins. 

z Values z’ Values yTRANSFORMED = y’ Values 

z1 z1 - zB y1 

z2 z2 - zB y2 

z3 z3 - zB y3 

z4 z4 - zB y4 

z5 z5 - zB y5 

 

Notice that Table 21 maps the same exact curve from two 

different origins, or perspectives, which are horizontally 

offset from each other by a distance of zB.  Since each 

horizontal offset is the same for every value of yTRANSFORMED = y’, 

the two plots must fall, or collapse, onto a singular curve! 

 

Now, the bottom of the two equations rendered above transforms 

as follows: 

νσ ++== 23 )'('' zzyy DTRANSFORME  

νσ +−+−= 23 )()( BB zzzz  

νσ ++−+−+−= ])2([)3()3(
223223

BBBBB zzzzzzzzzz  

''' 23 δγβ +++= zzz  (See Above) 

Then, 

'''])2([)3()3( 23223223 δγβνσ +++=++−+−+− zzzzzzzzzzzzz BBBBB  

'''])2([)3()3( 222322 δγβνσ +++=++−+−+− zzzzzzzzzzz BBBBB  

Now, where: 

'3'2 γβσ −−=  

]'27''9'3')'6'2('2[
27

1 223 δγβγβγββν +−−−+=  

]'27''9)'6'2('2[
27

1 23 δγβσγββ +−−−=
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The aforementioned equation reduces to an identity as follows: 

'''])2([)3()3( 222322 δγβνσ +++=++−+−+− zzzzzzzzzzz BBBBB  

''']'27''9)'6'2('2[
27

1
])2([)3()3( 22322322 δγβδγβσγββσ +++=+−−−++−+−+− zzzzzzzzzzz BBBBB  

''']'27''9)'3'(2'2[
27

1
])2([)3()3( 22322322 δγβδγβσγββσ +++=+−−−++−+−+− zzzzzzzzzzz BBBBB  

''']'27''92'2[
27

1
])2([)3()3( 23322322 δγβδγβσβσ +++=+−−++−+−+− zzzzzzzzzzz BBBBB  

Substituting for σ as follows: 

]'3''[
3

1 2 γββ −−−=Bz  

]'[
3

1
σβ +−=  

σβ =+ '3 Bz  

''']''9)'3(2'2[
27

1
])2()['3()3()3( 23322322

zzzzzzzzzzzzz BBBBBBB γβγββββ ++=−+−++−++−+−  

zzzzzzzzzzzzzzzzz BBBBBBBBB '']''9)'3(2'2[
27

1
')'2('3)6()3()3()3( 23322322322 γβγββββββ ++=−+−++−++−+−+−  

0']''9)'3(2'2[
27

1
')'2(2)3( 33232

=−−+−++−+− zzzzzzzz BBBBB γγβββββ  

0']''9)''9'2727(2'2[
27

1
')'2(2)3( 32233232

=−−+++−++−+− zzzzzzzzzz BBBBBBB γγβββββββ  

0']''9)'9'2727(2[
27

1
')'2(2)3( 223232

=−−++−++−+− zzzzzzzzzz BBBBBBB γγβββββ  

0'''
3

1
'

3

2
'22')'2(2)3( 223232

=−−−−−+−+− zzzzzzzzzz BBBBBBB γγβββββ  
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0'''
3

1
'

3

2
')'2()3( 222

=−−−−−− zzzzzzz BBBB γγββββ  

0'''
3

1
)'

3

2
'2()'3( 22

=−−+−+− zzzzz BB γγββββ  

0'''
3

1
)'3'')(

3

1
)('

3

2
'2()'3''3''2')(

9

1
)('3( 22222 =−−−−−+−−+−++− zzz γγβγββββγβγββββ  

0'''
3

1
)'3'')(

3

1
)('

3

2
'2()'3'3''2'2)(

9

1
)('3( 2222 =−−−−−+−−−++− zzz γγβγββββγγββββ  

0'9''3)'3'')('2'6()'3'3''2'2)('3( 2222 =++−−−++−−++ zzz γγβγββββγγββββ  

0'9''3)'3'')('2'6(''3'3''2'2'9'3''6'6 2222322 =++−−−++−−++−−+ zzzzz γγβγββββγβγβββγγβββ  

0)'3'')('2'6('3''2'2'3''6'6 2222322 =−−−++−++−+ γββββγβββγβββ zzz  

0'3''2'2'3''6'6'3''2'2'3''6'6 2232222322 =−−−−−−−++−+ γβββγβββγβββγβββ zzzz  

0'3'')22(')22('3')')66(')66( 22322 =−−+−+−−+− γβββγβββ zz  

0'3'')0(')0('3')')0(')0( 22322 =−++−+ γβββγβββ zz  

00 =  

Hence, the above validation proves the two equations denoted below generate identically 

shaped cubic functions: 

• DTRANSFORMEyzzz =+++ ''' 23 δγβ  

• ''' 23 yzz =++ νσ  

Naturally, the function ''' 23 yzz =++ νσ  exhibits the same curve shape as ''''' 23 yyzz =−=+ νσ  which 

rides either directly above or below it. 
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14.2.2.  The Algorithm. 

Generalized Cubic Curve Mapping is based upon the simple premise 

that a Parent Generalized Cubic Function exists which can fully 

characterize any given Generalized Cubic Curve in every respect. 

 

Moreover, its coefficient structure can be determined by 

mathematically interpreting the values of certain properties 

exhibited by such given Generalized Cubic Curve, hereinafter to 

be denoted or referred to as quintessential elements itemized 

below (Ref. Figure 19): 

• zP depicts the horizontal projection from any 

arbitrarily selected origin to a single point of 

inflection resident upon the cubic curve.  This 

measurement is equal to –β/3 computed by taking the 
second derivative of the cubic function and setting it 

equal to zero as follows: 

DTRANSFORMEyzzz =+++ ''' 23 δγβ  

dydzdzzdzz =++ ')'2(3 2 γβ  

yddzdzzP

222 )'2()6( =+ β  
22 /'26 dzydzP =+ β  

0=  

'26 β−=Pz  

3

'β
−=Pz  

• Single point of inflection denotes a singular point on 

the cubic curve where the actual curve bend changes 

from positive to negative, or vice versa.  Only one 

point of inflection occurs because the second 

derivative shown above with respect to its variable 

‘z’ is linear in form. 

• Relative low points and high points on the cubic curve 

are represented by two points of zero slope, zA and zB 

(Ref. Figure 19).  Only two such points exist because 

the first derivative shown above with respect to its 

variable ‘z’ is quadratic in form.  Intrinsic to the 

very nature of the Cubic Function, its relative low 

point and high point both exhibit zero slopes that, in 

a sense, just so happen to lie parallel to one 

another.  For single term Cubic Functions of the form 

αz3 = y, this represents a horizontal point of symmetry 
placed at the curve’s actual low point, or high point, 

depending upon the sign of α. 
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For binomial, three, and four term cubic functions, 

such relative low and high points constitute actual 

low and high points when moving away from the point of 

inflection in opposite directions as follows: 

A relative high point which resides to the left 

of the point of inflection is the actual high 

point left of that point of inflection; 

A relative low point which resides to the left of 

the point of inflection is the actual low point 

left of that point of inflection; 

A relative high point which resides to the right 

of the point of inflection is the actual high 

point right of that point of inflection; 

A relative low point which resides to the right 

of the point of inflection is the actual low 

point right of that point of inflection 

• The origin is any arbitrarily selected point within 

the grid, or envisioned coordinate system 

• The z-axis represents a line going through the origin 

which is drawn parallel to the two points of zero 

slope.  The z-axis distinguishes that the parameter 

‘z’, not ‘x’ applies to Cubic Function variables 

presented in this treatise 

• The y-axis represents a line which also passes through 

the origin drawn perpendicular to the z-axis, thereby 

establishing a mutually orthogonal coordinate system 

• zA represents the horizontal projection extending 

between the origin and the point of zero slope 

residing at Point A upon the Cubic Curve 

• zB represents the horizontal projection extending 

between the origin and the point of zero slope 

residing at Point B upon the Cubic Curve. In this 

case, zB is portrayed as a negative quantity 

• Δ depicts the horizontal projection between the two 

points of zero slope on the Cubic Curve.  Its length 

is determined as follows: 

BA zz −=∆  

)]'3''('3''[
3

1 22 γββγββ −−−−−+−=  

)]'3'''3''[
3

1 22 γββγββ −++−+−=  

'3'
3

2 2 γβ −=  
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• yA represents the length of vertical projection 

extending between the origin and the point of zero 

slope residing at Point A upon the Cubic Curve. In 

this particular case, yA is portrayed as a negative 

quantity 

• yB represents the length of vertical projection 

extending between the origin and the point of zero 

slope residing at Point B upon the Cubic Curve 

• ε depicts the vertical projection between the two 

points of zero slope on the cubic curve.  Its length 

is determined as follows: 

)'3''(
27

9
, 2 γββ −±−=BA zz  

2222
)]'3''(

3

1
[, γββ −±−=BA zz  

)'3''3''2'(
9

1 222 γβγβββ −+−= m  

)'3'3''2'2(
27

3 22 γγβββ −−= m  

3233
)]'3''(

3

1
[, γββ −±−=BA zz  

]'3')3'()3'('3'3''3'[
27

1 222223 γβγβγββγβββ −−±−−−±−=  

]'9'3')3'4('4[
27

1 223 γβγβγββ +−−±−=  

Then, 

]'3')3'4('3')3'4([
27

1 222233 γβγβγβγβ −−−−−−=− AB zz  

]'3')'3'4(2[
27

1 22 γβγβ −−−=  

)'3''2)'3''2(
27

3 2222 γββγββ −+−=− AB zz  

)'3''4(
27

3 2 γββ −=  

)'3''4(
27

3
)(' 2222 γβββ −=− AB zz  

)'3')'3'(
27

9 22 γβγβ −−−−=− AB zz  

)'3'2(
27

9 2 γβ −−=  

)'3'2(
27

9
)( 2 γβγγ −−=− AB zz  
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Accordingly, 

AB yy −=ε  

)'''()'''(
2323 δγβδγβ +++−+++= AAABBB zzzzzz  

)''()(')('
2233 δδγβ −+−+−+−= ABABAB zzzzzz  

)(')('
2233

ABABAB zzzzzz −+−+−= γβ  

]'3''18'3''12'3')'4'3)(2[(
27

1 22222 γβγγββγββγ −−−+−−=  

'3')'18'12'8'6(
27

1 222 γβγββγ −−+−=  

'3')'12'4(
27

1 22 γβγβ −−=  

'3')'3'(
27

4 22 γβγβ −−=  

2

3

2 )'3'(
27

4
γβ −=  

As indicated in Figure 19, Point P lies midway on the straight 

line which joins Point A to Point B (validation given below).  

Now, the slope of that line is calculated to be: 

∆
−=

ε
m  

'3'
3

2

)'3'(
27

4

2

2

3

2

γβ

γβ

−

−
−=  

'3'
3

2

)'3'(
27

4

2

32

γβ

γβ

−

−
−=  

3

2

)'3'(
27

4 22 γβ −
−=  

)'3'(
9

2 2 γβ −−=  
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Validation: 

]'3''[
3

1
, 2 γββ −±−=BA zz  

'3'
3

1 2 γβ −±= Pz  

 

Accordingly, 

BPPA zzzz −=−+=− '3'
3

1 2 γβ  

Hence, the horizontal offset from Point A to Point P is 

exactly the same as that running from Point P to Point B. 

Furthermore, 

'''
23 δγβ +++= PPPP zzzy  

')
3

'
(')

3

'
(')

3

'
( 23 δ

β
γ

β
β

β
+−+−+−=  

')
3

'
('

27

'3

27

' 33

δ
β

γ
ββ

+−+−=  

)'27''9'2(
27

1 3 δβγβ +−=  

'''
23 δγβ +++= BBBB zzzy  

'
27

27
)'3''(

27

'9
]'3'3''2'2[

27

'3
]''9'3')'4'3('4[

27

1 222223 δγββ
γ

γγβββ
β

γβγββγβ +−−−+−−+++−−+−=  

]'27)'3''('9)'3'3''2'2('3''9'3')'4'3('4[
27

1 222223 δγββγγγββββγβγββγβ +−−−+−−+++−−+−=  

]'27'3''9''9''9'3''6'6''9'3')'4'3('4[
27

1 2223223 δγβγγβγβγβββγβγββγβ +−−−−−+++−−+−=  

]'27''9'3')'6'2('2[
27

1 223 δγβγβγββ +−−−+=  

ν=  

)'27''9'2(
27

1
]'27''9'3')'6'2('2[

27

1 3223 δβγβδβγγβγββ +−−+−−−+=− PB yy  

]'27''9'2'27''9'3')'6'2('2[
27

1 3223 δβγβδβγγβγββ −+−+−−−+=  

'3')'3'(
27

2 22 γβγβ −−=  

2

3

2 )'3'(
27

2
γβ −=  

2

ε
=  
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Now, considering that the singularity proof presented in 

Section 14.2.1 validates that the two equations denoted 

below generate identically shaped cubic functions: 

• DTRANSFORMEyzzz =+++ ''' 23 δγβ  

• ''' 23 yzz =++ νσ  

A third parent equation is to be introduced as follows: 

• '''' 23 yzz =+σ  

It is easily recognized that '''' 23 yzz =+σ  produces an 

identical curve to the cubic function ''' 23 yzz =++ νσ  because 

for each and every value of z’ afforded, a value of ''y  is 

produced, along with another respective value of y’ which 

is located a distance of ν above it.  Accordingly, the y’ 
curve must trace out a curve which is identical to the ''y  

curve in every respect except that it maps out a locus 

which is displaced a distance of ν vertically above the y’ 
curve. .  This positioning is represented in Table 22. 

Table 22.  Curve Plot of z’3+σz’2 = y’’ with respect to z’3+σz’2+ν = y’. 

z = z’ 

Values 
''y  Values y’Values 

'zz 11 =  1''y  ν+1''y  

'zz 22 =  2''y  ν+2''y  

'zz 33 =  3''y  ν+3''y  

'zz 44 =  4''y  ν+4''y  

'zz 55 =  5''y  ν+5''y  

Figure 20 illustrates the following three identically 

shaped curves which are displaced relative to one another: 

• DTRANSFORMEyzzz =+++ ''' 23 δγβ  

• ''' 23 yzz =++ νσ  

• '''' 23 yzz =+σ   
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All curves exhibited in Figure 20 are charted with respect 

to an origin which, for this particular case, has been 

arbitrarily selected at the juncture of the z-axis and the 

y-axis. 

 

Figure 20.  Set of Identical, but Displaced Cubic Curves. 
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The Cubic Family Curve has its relative high point of zero 

slope resting on the origin.  This is because the first 

derivative of '''' 23 yzz =+σ , when set to zero, locates it 

there. 

 

The Figure 20 detail shows that Point B, a location of zero 

slope for the DTRANSFORMEyzzz =+++ ''' 23 δγβ  curve displays a yB 

value which is exactly the same as the value of ν for the 

''' 23 yzz =++ νσ  curve.  Again, as reflected in Table 22, this 

value of ν represents the distance which the ''' 23 yzz =++ νσ  

curve is elevated above its parent '''' 23 yzz =+σ  curve. 

 

When z equals zero, the DTRANSFORMEyzzz =+++ ''' 23 δγβ  curve 

displays a vertical displacement of δ’ above the z-axis. 
 

Lastly, the Parent Cubic Function '''' 23 yzz =+σ  is easily 

relegated to an equation which may be determined from 

measurable properties intrinsic to the given Cubic Curve 

via taking its second derivative and setting it equal to 

zero as follows: 

'''' 23 yzz =+σ  

'')'2()'3( 2 dydzzdzz =+ σ  

'')2()'6( 222 yddzdzz P =+ σ  
22 /''2'6 dzydz P =+ σ  

0=  

Or, 

3
'

σ
−=Pz  

2

∆
=  

So,  

2

3∆
−=σ  

This determination applies because the Parent Cubic Curve 

has been shown to be identical in shape to the given Cubic 

Curve, and therefore possesses the same value for Δ/2.  The 

Parent Cubic Function then reduces to '''
2

3
' 23

yzz =
∆

−  and can be 

easily plotted to exactly reproduce the given Cubic Curve. 
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Now, the only question remaining is where to place the 

origin of the given Cubic Curve in order to represent its 

proper displacement.  A threefold answer results as 

follows: 

• If a drawing of the given Cubic Curve is accompanied 

by the relative location of its origin, then the newly 

drawn '''' 23 yzz =+σ  Parent Cubic Curve should be situated 

with its point B placed at that same location 

• If a drawing of the given Cubic Curve is not 

accompanied by the relative location of its origin, 

then such relative location doesn’t figure into the 

assessment because a new function has been rendered 

which reproduces the exact same shape as the given 

Cubic Curve 

• If a drawing of the given Cubic Curve is accompanied 

by a notation which describes its particular 

DTRANSFORMEyzzz =+++ ''' 23 δγβ  Function, then the entire Curve 

Mapping exercise is unwarranted to begin with 

14.2.3.  Application. 

From properties exhibited in Cubic Curves, an 

interpretation is now possible which permits intuitive 

associations and linkages. 

 

Naturally, the first of such associations pertains to Cubic 

Curve relationships with respect to ζ.  This is 
accomplished as follows for: 

DTRANSFORMEyzzz =+++ ''' 23 δγβ  

Taking the first derivative of the function for Equation 

23, produces the following result: 

DTRANSFORMEyzzz =+−− ζζ 33 23
 [Ref. Equation 22] 

DTRANSFORMEdydzdzzdzz =−− 3)6()3( 2 ζ  

dz

dy
zz DTRANSFORME=−− 363 2 ζ  

Then, 

0122 =−− zz ζ  
222 12 ζζζ +=+− zz  
22 1)( ζζ +=−z  

21, ζζ +±=BA zz  
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BA zz −=∆  

)1(1 22 ζζζζ +−−++=  

212 ζ+=  

2/∆=Pz  

21 ζ+=  

2

3∆
−=σ  

213 ζ+−=  

Hence, a Parent Cubic Curve exists of the same exact shape 

as follows: 

'''' 23 yzz =+σ  

'''13' 223
yzz =+− ζ  

Figure 21 displays various plots of this determined Parent 

Cubic Function for values of 3θ which range between 45o to 
85o. 

 

The variability in Parent Cubic Function span, as 

demonstrated by its change in Δ for related curves with 
differing 3θ values, is clearly evidenced in the fourth row 
of Table 23.  The fifth row gives coefficient σ values for 
each of five respective 3θ-based Cubic Curves. 

Figure 21.  Cubic Parent Function Association for ζ=tan 3θ. 
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Table 23.  Cubic Parent Function Association for ζ=tan 3θ Plot. 

θ 28-1/3
o
 28

o
 25

o
 20

o
 15

o
 

3θ 85
o
 84

o
 75

o
 60

o
 45

o
 

ζ = tan 3θ 11.4300523 9.514364454 3.732050808 1.732050808 1 

zP = Δ/2
21 ζ+=  11.47371324 9.566772233 3.863703306 2 1.414213562 

σ =-3 Δ/2 -34.42113973 -28.7003167 -11.59110992 -6.000000001 -4.242640687 

z '''' 23 yzz =+σ  '''' 23 yzz =+σ  '''' 23 yzz =+σ  '''' 23 yzz =+σ  '''' 23 yzz =+σ  

20 -5768.455892 -3480.12668 3363.556033 5600 6302.943725 

19 -5567.031442 -3501.814329 2674.60932 4693 5327.406712 

18 -5320.449272 -3466.902611 2076.480387 3888 4457.384417 

17 -5034.709382 -3381.391526 1563.169234 3179 3686.876841 

16 -4715.811771 -3251.281075 1128.675861 2560 3009.883984 

15 -4369.756439 -3082.571257 767.0002687 2025 2420.405845 

14 -4002.543387 -2881.262073 472.1424563 1568 1912.442425 

13 -3620.172614 -2653.353522 238.1024241 1183 1479.993724 

12 -3228.644121 -2404.845605 58.88017199 863.9999998 1117.059741 

11 -2833.957907 -2141.738321 -71.52429992 604.9999999 817.6404769 

10 -2442.113973 -1870.03167 -159.1109917 399.9999999 575.7359313 

9 -2059.112318 -1595.725653 -209.8799033 242.9999999 385.3461043 

8 -1690.952943 -1324.820269 -229.8310347 127.9999999 240.470996 

7 -1343.635847 -1063.315518 -224.9643859 48.99999995 135.1106063 

6 -1023.16103 -817.2114012 -201.279957 -4.03233E-08 63.26493526 

5.67128182 -924.6942575 -740.6929236 -190.4020209 -10.57270667 45.95000976 

5 -735.5284932 -592.5079175 -164.7777479 -25.00000003 18.93398282 

4.5 -605.9030795 -490.0564132 -143.5949758 -30.37500002 5.211526086 

4 -486.7382357 -395.2050672 -121.4577587 -32.00000002 -3.882250994 

3.732050808 -427.4438675 -347.7630817 -109.4625725 -31.58845729 -7.111599605 

3 -282.7902576 -231.3028503 -77.31998925 -27.00000001 -11.18376618 

2 -129.6845589 -106.8012668 -38.36443967 -16 -8.970562748 

1 -33.42113973 -27.7003167 -10.59110992 -5.000000001 -3.242640687 

0.363970234 -4.511700753 -3.753838548 -1.487307821 -0.746629274 -0.513824274 

0 0 0 0 0 0 

-0.839099631 -24.82631814 -20.7983542 -8.751963751 -4.815329286 -3.577993346 

-1 -35.42113973 -29.7003167 -12.59110992 -7.000000001 -5.242640687 

-2 -145.6845589 -122.8012668 -54.36443967 -32 -24.97056275 

-3 -336.7902576 -285.3028503 -131.3199893 -81.00000001 -65.18376618 

-4 -614.7382357 -523.2050672 -249.4577587 -160 -131.882251 

-5 -985.5284932 -842.5079175 -414.7777479 -275 -231.0660172 

-6 -1455.16103 -1249.211401 -633.279957 -432 -368.7350647 

-7 -2029.635847 -1749.315518 -910.9643859 -637.0000001 -550.8893937 
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θ 28-1/3
o
 28

o
 25

o
 20

o
 15

o
 

3θ 85
o
 84

o
 75

o
 60

o
 45

o
 

ζ = tan 3θ 11.4300523 9.514364454 3.732050808 1.732050808 1 

zP = Δ/2
21 ζ+=  11.47371324 9.566772233 3.863703306 2 1.414213562 

σ =-3 Δ/2 -34.42113973 -28.7003167 -11.59110992 -6.000000001 -4.242640687 

z '''' 23 yzz =+σ  '''' 23 yzz =+σ  '''' 23 yzz =+σ  '''' 23 yzz =+σ  '''' 23 yzz =+σ  

-8 -2714.952943 -2348.820269 -1253.831035 -896.0000001 -783.529004 

-9 -3517.112318 -3053.725653 -1667.879903 -1215 -1072.653896 

-10 -4442.113973 -3870.03167 -2159.110992 -1600 -1424.264069 

-11 -5495.957907 -4803.738321 -2733.5243 -2057 -1844.359523 

-12 -6684.644121 -5860.845605 -3397.119828 -2592 -2338.940259 

-13 -8014.172614 -7047.353522 -4155.897576 -3211 -2914.006276 

-14 -9490.543387 -8369.262073 -5015.857544 -3920 -3575.557575 

-15 -11119.75644 -9832.571257 -5982.999731 -4725 -4329.594155 

 

Conversely, the relative location of the origin for the 

given Cubic Function DTRANSFORMEyzzz =+−− ζζ 33 23
 is determined 

as follows for the particular condition when: 

• 3)3tan( == θζ  

• 2124 ζ+==∆   

212 ζ+=  

732050808.321 2 =+=++= ζζζAz  

ζζ +−−= AAADTRANSFORMEA zzzy 33
23

)(
 

ζζζζζ ++−+−+= )2(3)2(3)2( 23
 

ζζζζζζ ++−+−++= )2(3)47(3)2)(47(  

ζζζζζ +−−−−+++= 633621)812147(  

ζ816 −−=  

2

3

2 )'3'(
27

4
γβε −=  

2

3

2 ]9)33[(
27

4
+=  

2

3

)36(
27

4
=  

3)6(
27

4
=  

32=  
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The location of the z-axis, relative to the given Cubic 

Curve’s relative high and low points, is determined as a 

percentage ε/
)( DTRANSFORMEAy  as follows: 

)4(8

)2(8)( ζ

εε

+−
== ADTRANSFORMEA yy

 

4

)732050808.3(−
=  

=-0.933012701 

Or, 

ε933012701.0−=Ay  

This indicates that Ay  is equal to %93.3012701  the height of 

ε (Ref. Figure 19). 
 

Therefore, based upon the triangular similarity rendered 

below, the origin must lie on straight line APB (Ref. 

Figure 19). 

ε
AA yz

=−=
−

=
∆

−
933012701.0

4

732050808.3
 

This ratio afforded above applies to a similarity between 

two right triangles whose respective angles are equal, 

where:  

• The larger triangle maintains a hypotenuse denoted by 

APB in Figure 19.  It exhibits respective sides 

adjacent to its included right angle of Δ and ε, 
respectively 

•  The smaller similar triangle exhibits respective 

sides adjacent to its included right angle of -zA and 

yA, respectively 

 

For 3=ζ , the Parent Cubic Function reduces to the 

following expression: 

22323 '13''''' zzyzz ζσ +−==+  

223 ')3(13' zz +−=  

23 '313' zz +−=  
23 '43' zz −=  
23 ')2(3' zz −=  

23 '6' zz −=  
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For 3=ζ , the given Family Cubic Function reverts to the 

following: 

DTRANSFORMEyzzz =+−− ζζ 33 23
 

DTRANSFORMEyzzz =+−− 3333 23
 

DTRANSFORMEyzzz =−+− )31(33 23
 [Ref. Equation 25] 

 

Equation 25 is plotted alongside its Parent Curve, noted 

above, in order to illustrate that they’re identical. 

 

For Equation 25, notice that 732050808.13 === ζDTRANSFORMEy  when 

z equals zero, calculated as follows: 

DTRANSFORMEyzzz =−+− )31(33 23
 

=−+− ])0(31[3)0(3)0( 23
 

=3  

Figure 22 shows the plot of Equation 25 with respect to its 

Parent Cubic Function, thereby indicating identical curve 

shape. 
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Figure 22.  Equation 25 Plot and Assoc. Parent Cubic Function Identical Curve Shapes. 

 
 

 


